Question 6 (12 marks)

The concentration of caffeine in the blood plasma of an adult t hours after they have consumed a 150 milligram dose of caffeine can be modelled by the function

$$c(t) = 15(e^{-0.3t} - e^{-0.6t})$$
 for $t \ge 0$,

where the concentration, c(t), is measured in milligrams per litre (mg L⁻¹).

(a) On the set of axes in Figure 7, sketch a graph of y = c(t).

Source: adapted from © Bagwold | dreamstime.com

(2 marks)

(b) Using the model above, determine the concentration of caffeine in the blood plasma of an adult 10 hours after they have consumed a 150 milligram dose of caffeine.

(1 mark)

(c) (i) Determine c'(2).

(1 mark)

(ii) Interpret the value of c'(2) in the context of the problem.

(2 marks)

(d) (i) Show that $c'(t) = -4.5 e^{-0.3t} + 9e^{-0.6t}$.

(1 mark)

(ii) Hence, by letting c'(t) = 0, show that the concentration of caffeine in an adult's blood plasma reaches its maximum at $t = \frac{10}{3} \ln 2$ hours.

Question 6 continues on page 14.

(3 marks)

A general model for the concentration, $c_d(t)$, of caffeine in the blood plasma of an adult *t* hours after they have consumed a dose of *d* milligrams of caffeine is

$$c_d(t) = \frac{d}{10} \left(e^{-0.3t} - e^{-0.6t} \right)$$
 for $t \ge 0$,

where $c_{d}(t)$ is measured in milligrams per litre (mg L⁻¹).

The maximum concentration of caffeine in an adult's blood plasma in the general model also occurs at $t = \frac{10}{3} \ln 2$ hours.

(e) If the concentration of caffeine in an adult's blood plasma is greater than 15 mg L⁻¹, the adult will experience serious side effects.

Show that the general model predicts that a dose of 600 milligrams of caffeine is the maximum an adult can consume without experiencing serious side effects.

(2 marks)