Question 11

The graph of $y=g(x)$ is shown below, where $g(x)=2 \ln x+3$ and $x>0$.

Let $f(x)=(\ln x)^{2}$.
(a) On the axes above, sketch the curve of $y=f(x)$. Clearly show the coordinates of any intersection points or turning points.
(b) Using algebra, show that the solutions to the equation $f(x)=g(x)$ are $x=\frac{1}{e}$ and $x=e^{3}$.

Let $D(x)=g(x)-f(x)$.
(c) (i) Calculate the value of $D(3)$.

(1 mark)
(ii) Interpret your answer to part (c)(i), in relation to the graphs of $y=f(x)$ and $y=g(x)$.

(1 mark)
(iii) State the domain of $D(x)$ if $D(x) \geq 0$.

(d) (i) Show that $D^{\prime}(x)=\frac{2-2 \ln x}{x}$.

(1 mark)

Question 11 continues on page 6.

(ii) Determine $D^{\prime \prime}(x)$.

(iii) Use $D^{\prime}(x)$ to calculate the exact maximum value of $D(x)$.

(iv) Use your answer to part (d)(ii) to justify that your answer to part (d)(iii) is the maximum value of $D(x)$.

