Question 8

Figure 9 shows the graph of $y=x \ln \left(x^{2}+2\right)$. The tangent to the graph at $x=1$ is also shown.

Figure 9
(a) (i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\ln \left(x^{2}+2\right)+\frac{2 x^{2}}{x^{2}+2}$.

(ii) Hence show that the tangent to the graph of $y=x \ln \left(x^{2}+2\right)$ at $x=1$ has equation $y=\left(\ln 3+\frac{2}{3}\right) x-\frac{2}{3}$.

(iii) Determine the y-intercept of this tangent.

Consider the family of functions of the form $y=x \ln \left(x^{n}+n\right)$ where $n>0$.
The table below shows the values of the y-intercept of the tangent to the graphs of $y=x \ln \left(x^{n}+n\right)$ at $x=1$, where $n=3,4$, and 5 .

n	Function	y-intercept of the tangent to the graph of the function at $x=1$
3	$y=x \ln \left(x^{3}+3\right)$	$-\frac{3}{4}$
4	$y=x \ln \left(x^{4}+4\right)$	$-\frac{4}{5}$
5	$y=x \ln \left(x^{5}+5\right)$	$-\frac{5}{6}$

(b) Make a conjecture about the value of the y-intercept of the tangent to the graph of $y=x \ln \left(x^{n}+n\right)$ at $x=1$.

Question 8 continues on page 6.

(c) Prove or disprove the conjecture that you made in part (b) for the y-intercept of the tangent to the graph of $y=x \ln \left(x^{n}+n\right)$ at $x=1$.

(4 marks)

