Question 7

 (7 marks)(a) Verify that $\frac{x^{2}}{x+1}=(x-1)+\frac{1}{x+1}$.

(b) Use integration by parts to show that, for $x>-1$:

$$
\int x \ln (x+1) \mathrm{d} x=\frac{x^{2}}{2} \ln (x+1)-\frac{1}{4}(x-1)^{2}-\frac{1}{2} \ln (x+1)+c
$$

where c is a constant.

(3 marks)
(c) (i) Figure 8 shows the graph of $f(x)=x \ln (x+1)$ for $x>-1$.

On the same axes, sketch the graph of $g(x)=x|\ln (x+1)|$ for $x>-1$.

Figure 8
(ii) Using the information in part (b), find the exact value of $\int_{-\frac{1}{2}}^{0} g(x) \mathrm{d} x$.

