Question 13 (15 marks)

Figure 12 shows the graph of $g(x) = \arcsin(x^2)$ for $-1 \le x \le 1$.

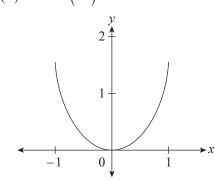
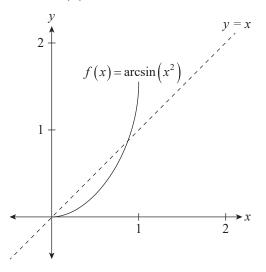


Figure 12


(a)	(i)	Explain why $g(x)$ c	does not have an inverse.
-----	-----	----------------------	---------------------------

(1 mark)

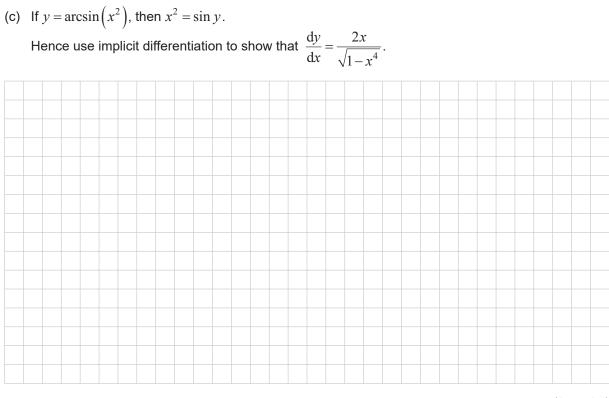
(ii) Explain why $f(x) = \arcsin(x^2)$ for $0 \le x \le 1$ does have an inverse.

(1 mark)

(b) Figure 13 shows the graph of y = f(x).

(i) On the axes in Figure 13, sketch the graph of $f^{-1}(x)$.

(2 marks)

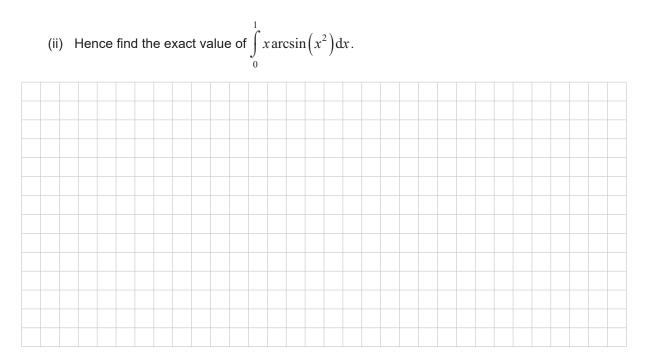

(ii) \	Nrit	e th	ne e	exa	ct d	lom	ain	of	f^{-1}	(<i>x</i>).									

(1 mark)

(iii) Find the equation of $f^{-1}(x)$.

(2 marks)

(3 marks)


(d) (i) Use integration by parts to show that

$$\int x \arcsin(x^2) dx = \frac{1}{2}x^2 \arcsin(x^2) + \frac{1}{2}\sqrt{1 - x^4} + c$$

where c is a constant.

(3 marks)

(2 marks)