Question 6 (6 marks)

(a) Use integration by parts to show that

$$
\int \arctan x \mathrm{~d} x=x \arctan x-\frac{1}{2} \ln \left(x^{2}+1\right)+c, \text { where } c \text { is a constant. }
$$

(b) Consider the graph of $f(x)=\sqrt{\arctan x}$ for $x \geq 0$, shown in Figure 4.

Figure 4

Consider rotating the graph of $f(x)$ about the x-axis between $x=0$ and $x=1$.
(i) Show that the volume of the solid that is obtained by this rotation is given by the equation below.

$$
V=\pi \int_{0}^{1} \arctan x \mathrm{~d} x
$$

(ii) Hence find the exact volume of this solid.

(3 marks)

