Question 7

 (10 marks)(a) Using the fact that $\sin ^{3} x=\sin ^{2} x \sin x$ show that

$$
\int \sin ^{3} x \mathrm{~d} x=-\cos x+\frac{1}{3} \cos ^{3} x+c, \text { where } c \text { is a constant. }
$$

(b) Figure 5 shows the graph of $f(x)=\sin ^{3} x$ for $0 \leq x \leq \frac{\pi}{2}$ and the graph of $y=x$ for $x \geq 0$.

Figure 5
(i) Find $f\left(\frac{\pi}{2}\right)$.

(ii) Explain why the function $f(x)$ has an inverse function.

(iii) On Figure 5, draw the graph of the inverse function, $f^{-1}(x)$, using symmetry about the line $y=x$.
(c) Use parts (a) and (b) to show that $\int_{0}^{1} f^{-1}(x) \mathrm{d} x=\frac{\pi}{2}-\frac{2}{3}$.

(4 marks)

