## Question 9

 (15 marks)Consider $f(x)=\frac{x^{2}-1}{x+2}$.
(a) Show that $f(x)=x-2+\frac{3}{x+2}$.

(b) Sketch the graph of $y=f(x)$ on Figure 7 below.

Clearly label all asymptotes and the axes intercepts.


Figure 7
(c) (i) On Figure 7 above, sketch and clearly label the graph of $y=f(|x|)$.
(ii) State the interval for which $f(|x|)>f(x)$ for $x>-2$.

(d) (i) Show that the expression for finding the area between $f(|x|)$ and $f(x)$ for $x>-2$ is given by

$$
\int_{-1}^{0}-2 x+\frac{6 x}{4-x^{2}} \mathrm{~d} x
$$

Note that $|x|=-x$ for $x \leq 0$.

(ii) Hence show that the exact value of the area between $f(|x|)$ and $f(x)$ is

$$
1+3 \ln \left(\frac{3}{4}\right)
$$



