Question 10 (9 marks)

For positive integer values of n, the function $f(x)=k x^{n}(1-x)$ forms a probability density function on the interval $0 \leq x \leq 1$ for a certain integer value of k. For this value of $k, f(x) \geq 0$ for $0 \leq x \leq 1$.
(a) For $n=1$, algebraically find the value of k such that $f(x)$ forms a probability density function for $0 \leq x \leq 1$.

(b) (i) Find the area under the curve of $y=x^{2}(1-x)$, for $0 \leq x \leq 1$.

(ii) Hence find the value of k such that $f(x)=k x^{2}(1-x)$ forms a probability density function for $0 \leq x \leq 1$.

After considering several more values of n, the following conjecture is made:
'In order for $f(x)=k x^{n}(1-x)$ to form a probability density function for $0 \leq x \leq 1, k=(n+1)(n+2)$ '.
(c) Prove or disprove this conjecture.

