Question 10 (9 marks)

For positive integer values of *n*, the function $f(x) = kx^n(1-x)$ forms a probability density function on the interval $0 \le x \le 1$ for a certain integer value of *k*. For this value of *k*, $f(x) \ge 0$ for $0 \le x \le 1$.

(a) For n = 1, algebraically find the value of k such that f(x) forms a probability density function for $0 \le x \le 1$.

(3 marks)

(b) (i) Find the area under the curve of $y = x^2(1-x)$, for $0 \le x \le 1$.

(1 mark)

(ii) Hence find the value of k such that $f(x) = kx^2(1-x)$ forms a probability density function for $0 \le x \le 1$.

														(1	ma	ırk)

After considering several more values of n, the following conjecture is made:

'In order for $f(x) = kx^n(1-x)$ to form a probability density function for $0 \le x \le 1$, k = (n+1)(n+2)'.

(c) Prove or disprove this conjecture.

(4 marks)