Question 8 (10 marks)

Consider the continuous random variable X, with the probability density function $f(x)=\frac{1}{8} x$ for $0 \leq x \leq 4$. A graph of $y=f(x)$ is shown in Figure 9.

Figure 9
(a) Given $\mu_{X}=\frac{8}{3}$, calculate σ_{X}.

(b) Find $\operatorname{Pr}(2 \leq X \leq 3)$.

(1 mark)
(c) Using integration and an algebraic process, show that $\operatorname{Pr}(0 \leq X \leq 1)=\frac{1}{16}$.

Consider the real numbers m and n, such that $\operatorname{Pr}(m \leq X \leq n)=\frac{1}{16}$ where $0 \leq m \leq 4$ and $0 \leq n \leq 4$.
The following conjecture is made for the value of n in terms of m :

$$
n=\sqrt{m^{2}+1}
$$

(d) Prove this conjecture.

(e) Use the conjecture $n=\sqrt{m^{2}+1}$ to determine the exact maximum value of m that satisfies the probability statement $\operatorname{Pr}(m \leq X \leq n)=\frac{1}{16}$, for $0 \leq x \leq 4$.

(2 marks)

