Question 8 (10 marks)

Consider the continuous random variable *X*, with the probability density function $f(x) = \frac{1}{8}x$ for $0 \le x \le 4$. A graph of y = f(x) is shown in Figure 9.

Figure 9

(2 marks)

(b) Find $Pr(2 \le X \le 3)$.

(1 mark)

(2 marks)

Consider the real numbers *m* and *n*, such that $Pr(m \le X \le n) = \frac{1}{16}$ where $0 \le m \le 4$ and $0 \le n \le 4$. The following conjecture is made for the value of *n* in terms of *m*:

$$n = \sqrt{m^2 + 1}.$$

(d) Prove this conjecture.

(3 marks)

(e) Use the conjecture $n = \sqrt{m^2 + 1}$ to determine the *exact* maximum value of *m* that satisfies the probability statement $Pr(m \le X \le n) = \frac{1}{16}$, for $0 \le x \le 4$.

(2 marks)