Question 4 (9 marks)

The fat content in grams, X, per carton of Ted's Oat Milk can be modelled using a normal distribution with a mean of $\mu_{X}=2.7 \mathrm{~g}$ and a standard deviation of $\sigma_{X}=0.35 \mathrm{~g}$.
(a) Determine the probability that a carton of Ted's Oat Milk will contain:
(i) at least 2.8 g of fat

(ii) between 1 g and 3 g of fat.

(1 mark)
(b) Ted's Oat Milk is sold in packs of six cartons. Let S_{6} represent the distribution of fat content in one six-pack of Ted's Oat Milk.
(i) Explain why S_{6} can be modelled by a normal distribution.

(ii) Show that the distribution of S_{6} has a mean of $\mu_{S_{6}}=16.2 \mathrm{~g}$ and a standard deviation of $\sigma_{S_{6}}=0.857 \mathrm{~g}$ (correct to three significant figures).

(2 marks)
(iii) Hence, determine the probability that a six-pack of Ted's Oat Milk will contain less than 18 g of fat.

(c) Find the value of k if $\operatorname{Pr}(Z<k)=0.99$, given that $Z \sim N(0,1)$.

(1 mark)
(d) The label on the side of a six-pack of Ted's Oat Milk states that:
'Each pack of 6 contains less than 18 g of fat.'

The company would like this statement to be true for at least 99% of Ted's Oat Milk six-packs and it is considering improvements to the manufacturing process. Although it cannot change the mean fat content of a six-pack through these improvements, the standard deviation can be reduced.

Using your answer to part (c), determine the

Source: © adapted from Photeuphoria | Dreamstime.com largest possible value of $\sigma_{S_{6}}$ that will result in at least 99% of six-packs containing less than 18 g of fat. Assume that $\mu_{S_{6}}=16.2 \mathrm{~g}$.

