Stage 2 Specialist Mathematics

Rates of Change and Differential Equations Test

Topic 6: Subtopics 6.1, 6.2, 6.3, 6.4, 6.5

Total Marks - 38

(Calculator and one A4 page of handwritten notes permitted.)

QUESTION 1

(8 marks)

A curve has the following parametric equations:

$$\begin{cases} x(t) = \sin 2t \\ y(t) = \cos^2 t \end{cases} \text{ where } 0 \le t \le 2\pi.$$

(a) Sketch a graph of the curve on the axes in Figure 1.

Figure 1

(3 marks)

(b) Show that $\frac{dy}{dx} = -\frac{1}{2} \tan 2t$.

$z'(t) = 2\cos 2t$	$\frac{dy}{dz} = -\sin 2t$ $\frac{dy}{dz} = 2\cos 2t$	
$y'(t) = 2\cos t \cdot - \sin t$	= -1 tan 2t	
= - sin2t	2	

(3 marks)

(c) (i) What is the slope of the tangent to the curve at $t = \frac{\pi}{4}$?

(1 mark)

(ii) Draw the tangent to the curve at $t = \frac{\pi}{4}$ on your graph in Figure 1.

(1 mark)

QUESTION 2 (8 marks)

Sociologists can study the spread of a new fashion by modelling the rate at which the fashion spreads. For one such model the rate of spread is given by the differential equation

$$\frac{dN}{dt} = \frac{0.5N(10000 - N)}{10000}$$

where N is the number of people who follow the fashion and t is in weeks. Initially there are 100 people following the fashion.

(a) Show that
$$\frac{10000}{N(10000-N)} = \frac{1}{N} + \frac{1}{10000-N}$$
.

(1 mark)

(b) Solve the differential equation given above with the initial condition t = 0, N = 100 to show that

$$N = \frac{10000}{1 + 99e^{-0.5t}}$$

(c) What is the estimated time at which the fashion is spreading at the greatest rate?

(2 marks)

QUESTION 3 (7 marks)

A pharmaceutical company markets an antibiotic tablet that has the shape of a cylinder with hemispherical ends, as shown in Figure 2. The surface area of the tablet is 200 square millimetres. The cylindrical section has a length of l millimetres and a radius of r millimetres.

Figure 2

(a) (i) Show that the surface area of the tablet is $A=2\pi rl+4\pi r^2$.

cylinder	two hemispherical ends	>	
$A = 2\pi r \times L$	+ 2× 2πr ²		
$=2\pi + l +$	4772		

(1 mark)

(ii) Hence show that $\frac{dA}{dt} = (2\pi l + 8\pi r)\frac{dr}{dt} + 2\pi r\frac{dl}{dt}$.

Differentiating	$A = 2\pi r l +$	4Tr2 with n	respect to t give	es
	$\frac{dA}{dt} = \frac{2\pi - dl}{dt}$	+ 2/11 dr +	+ 8Tr dr dt	
	= (2\pi l +	87(r) dr + 2	etr dl	

(3 marks)

At a particular instant when the tablet is dissolving:

- the radius is 1 millimetre and is decreasing at the rate of 0.05 millimetres per second;
- the surface area is half its original value and is decreasing at the rate of 6 square millimetres per second.

(b) Find the rate at which the length is changing at this instant.

Substi	itution	g t	he	600	diti	ons	s al	00 V	e	int	0	the	eq	ua ti	on	for	A	gi	ves						
100 =	= 27	πι	÷	4π	-																				
2πι :	= 10	00-	47	τ																					
l =	= 10	27		T		~		13.	9 n	nm															
Substi	tutic	9	the	con	diti	ons	s a	bo v	e	and	l th	is i	Value	> of	- 6	int	oti	ne e	gwa	ation	r fo	r d	A o	ives	
-6=	(10	0-	4-TT	-	+ '	8π).	-0	.05	+	21	T. <u>0</u>	l <u>l</u>												
-6=	- 5	400	0.	2π		+	2π	dl																	
2Tdl dt	= 0	.27	t -	1																					
dl =	0-27		-		~	6.00-	0,	050	12	mn	/s														

(3 marks)

QUESTION 4 (7 marks)

Figure 3 shows the slope field for the differential equation $\frac{dy}{dx} = 3y - 6xy$ and the point P(0,1).

Figure 3

(a) On Figure 3 draw the solution curve that passes through P.

(3 marks)

(b) By solving the differential equation $\frac{dy}{dx} = 3y - 6xy$, with the initial condition x = 0 and y = 1, show that $y = e^{3x(1-x)}$.

(4 marks)

QUESTION 5

(8 marks)

A Bézier curve has control points S(8,-7), $C_1(1,6)$, $C_2(-4,12)$, and E(-7,3), and for this curve $y(t) = -8t^3 - 21t^2 + 39t - 7$.

(a) Find x(t) for the Bézier curve.

(2 marks)

(b) Find the coordinates of the highest point on the Bézier curve.

(4 marks)

(c) Find the x-intercept for the Bézier curve correct to three significant figures.

(2 marks)