Stage 2 Specialist Mathematics
Rates of Change and Differential Equations Test
Topic 6: Subtopics 6.1, 6.2, 6.3, 6.4, 6.5
Total Marks - 38

(Calculator and one A4 page of handwritten notes permitted.)

QUESTION 1 (8 marks)

A curve has the following parametric equations:

{x(t) = sin 2t

() = cos? ¢ where 0 <t < 2.

(a) Sketch a graph of the curve on the axes in Figure 1.
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(b) Show that % = — Ztan 2.
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(c) (i) What is the slope of the tangent to the curve at t = %’?
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(ii) Draw the tangent to the curve at ¢t = % on your graph in Figure 1.
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QUESTION 2 (8 marks)

Sociologists can study the spread of a new fashion by modelling the rate at which the fashion spreads. For
one such model the rate of spread is given by the differential equation

dN _ 0.5N(10000 — N)
dt 10000

where N is the number of people who follow the fashion and ¢ is in weeks. Initially there are 100 people
following the fashion.
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(b) Solve the differential equation given above with the initial condition t = 0, N = 100 to show that
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(c) What is the estimated time at which the fashion is spreading at the greatest rate?
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QUESTION 3 (7 marks)

A pharmaceutical company markets an antibiotic tablet that has the shape of a cylinder with hemispherical

ends, as shown in Figure 2. The surface area of the tablet is 200 square millimetres. The cylindrical section
has a length of | millimetres and a radius of r millimetres.

Figure 2

(a) (i) Show that the surface area of the tablet is 4 = 2rrl + 4mr?.
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At a particular instant when the tablet is dissolving:
e theradius is 1 millimetre and is decreasing at the rate of 0.05 millimetres per second;
e the surface area is half its original value and is decreasing at the rate of 6 square millimetres per
second.

(b) Find the rate at which the length is changing at this instant.
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QUESTION 4

(7 marks)

Figure 3 shows the slope field for the differential equation o 3y — 6xy and the point P(0,1).
dx

Figure 3

(a) On Figure 3 draw the solution curve that passes through P.

(3 marks)

(b) By solving the differential equation Z—z = 3y — 6xy, with the initial condition x = 0 and y = 1, show that
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QUESTION 5 (8 marks)

A Bézier curve has control points §(8,—7), C,(1,6), C,(—4,12), and E(—7,3), and for this curve
y(t) = —8t3 — 21t? + 39t — 7.

(a)

(b)

(c)

Find x(t) for the Bézier curve.
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Ce = 3(N~3(8) = -2

de=(8) = 8

2x(E)= 6L = N+ 8

(2 marks)
Find the coordinates of the highest point on the Bézier curve.
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Find the x-intercept for the Bézier curve correct to three significant figures.
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