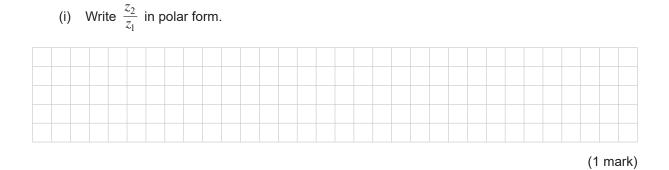
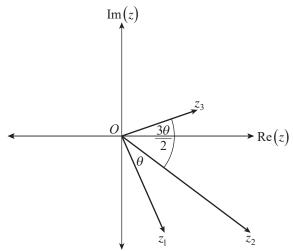

Question 3 (7 marks)


(a) Write the following complex numbers in exact polar form.

(i) $z_1 = $	$\overline{3}-3i$							
							(1 n	nark)
							(' ' '	iany
(ii) $z_2 = 3$	$\sqrt{3}-3i$							
(ii) $z_2 = 3$	$\sqrt{3}-3i$							
(ii) $z_2 = 3$	$\sqrt{3}-3i$							
(ii) $z_2 = 3$	$\sqrt{3}-3i$							

(b) Complex numbers z_1 and z_2 from part (a) are shown on the Argand diagram in Figure 2. The measure of the acute angle between z_1 and z_2 is θ .



(ii) State the exact value of θ .


(1 mark)

(c) The complex number z_2 from part (a) is scaled by a factor of $\frac{1}{2}$ and rotated anticlockwise about the origin *O* through $\frac{3\theta}{2}$ to produce complex number z_3 , as shown on the Argand diagram in Figure 3.

Using the value of θ found in part (b)(ii), find $z_{\rm 3}$ in exact polar form.

(3 marks)