Question 9 (15 marks)

On the Argand diagram in Figure 10 is the set of complex numbers z such that $z=\operatorname{cis} \theta$ for $-\pi<\theta \leq \pi$. The Argand diagram in Figure 11 shows the complex numbers $z_{1}, z_{2}, z_{3}, z_{4}, z_{5}$ which are the zeros of the polynomial $z^{5}-1$.

Figure 10

Figure 11
(a) Using De Moivre's theorem or otherwise, write the zeros of $z^{5}-1$ in exact polar form.

(b) Consider the function $f(z)=z^{2}+z+1+\frac{1}{z}+\frac{1}{z^{2}}$, where $z=\operatorname{cis} \theta$.
(i) Show that $|f(z)| \leq 5$.

(ii) Find a value of z for which $|f(z)|=5$.

(c) (i) Show that $z^{5}-1=z^{2}(z-1) \times f(z)$.

(ii) Hence list the four zeros of $f(z)$ in polar form.

(d) Using $z=\operatorname{cis} \theta$:
(i) show that $f(z)$ is real.

(ii) show that $f(z)=4 \cos ^{2} \theta+2 \cos \theta-1$.

(iii) find the minimum value of $f(z)$.

(iv) on Figure 12, mark the value(s) of z for which $f(z)$ is the minimum.

Figure 12

