Question 9 (15 marks)

On the Argand diagram in Figure 10 is the set of complex numbers z such that $z = \operatorname{cis}\theta$ for $-\pi < \theta \le \pi$. The Argand diagram in Figure 11 shows the complex numbers z_1, z_2, z_3, z_4, z_5 which are the zeros of the polynomial $z^5 - 1$.

Figure 10

Figure 11

(a) Using De Moivre's theorem or otherwise, write the zeros of z^5-1 in exact polar form.

(3 marks)

(b)	Consider the function	$f(z) = z^2 + z$	$+1+\frac{1}{z}+$	$\frac{1}{z^2}$, where	$z = \operatorname{cis} \theta$.
-----	-----------------------	------------------	-------------------	-------------------------	-----------------------------------

(i) Show that $|f(z)| \le 5$.

(2 marks)

(ii) Find a value of z for which |f(z)| = 5.

(1 mark)

(c) (i) Show that $z^5 - 1 = z^2 (z - 1) \times f(z)$.

(2 marks)

(ii) Hence list the four zeros of f(z) in polar form.

(1 mark)

(d) Using $z = \operatorname{cis} \theta$:

(i) show that f(z) is real.

(3 marks)

(1 mark)

(iii) find the minimum value of f(z).

(1 mark)

(iv) on Figure 12, mark the value(s) of z for which f(z) is the minimum.

Figure 12

(1 mark)