01 – DNA AND PROTEINS **Security Security Sec**

I understand that	I can	Mastery Check
1.1 - DNA STRUCTURE		
1.1.1 DNA stores and transmits genetic information; it functions in the same way in all living things.		ŶŶŶŶŶ
1.1.2 DNA is a helical double-stranded molecule.		ŶŶŶŶŶŶ
1.1.3 In eukaryotes, DNA is bound to protein histones in linear chromosomes, which are found in the nucleus.		ŶŶŢŢŢŢŖŖ
1.1.4 DNA is unbound and circular in the cytosol of prokaryotes and in the mitochondria and chloroplasts of eukaryotes.	☑ Compare chromosomes in prokaryotes and eukaryotes.	ŶŶŶŶŶ
1.1.5 Replication of DNA allows for genetic information to be inherited.		ŶŶÇŶŶŶŶŶ
1.1.6 Base-pairing rules and method of DNA replication are universal.	 Describe the structural properties of the DNA molecule, including: nucleotide composition and pairing the weak bonds between strands of DNA that allow for replication Explain the importance of complementary base pairing (A-T and C-G). Describe and represent the process of semiconservative replication of DNA. 	ŶŶŢŢŢŢ

I understand that	I can	Mastery Check
1.2 - STRUCTURE AND FUNCTION OF PROTEINS		
1.2.1 A gene consists of a unique sequence of nucleotides that code for a functional protein or an RNA molecule.	 Distinguish between exons and introns as coding and non-coding segments of DNA found in genes in eukaryotes. Describe how both exons and introns are transcribed but only the information contained in exons will be translated to form a polypeptide. 	ŶŶÇŶŶŶ
 1.2.2 Protein synthesis involves transcription of a gene into messenger RNA (mRNA), and translation of mRNA into an amino acid sequence [polypeptide] at the ribosomes. 	 Describe and illustrate the role of DNA, mRNA, transfer RNA (tRNA), ribosomal RNA (rRNA) in transcription and translation. Describe the relationship between DNA codons and RNA codons, anticodons, and amino acids. Distinguish between coding (gene) and template strands Recognize that DNA strands are directional and are read 5' to 3'. 	ŸŢŢŢŢŢ
1.2.3 In eukaryotic cells, transcription occurs in the nucleus.		$\begin{array}{c} \bigcirc \bigcirc$
1.2.4 The folding of a polypeptide to form a protein with a unique three-dimensional shape is determined by its sequence of amino acids. (peptide bonds for 1 [°] , h-bonds for 2 [°] , disulfide bridges for 3 [°])	☑ Describe the factors that determine the primary, secondary, tertiary, and quaternary structure of proteins.	
1.2.5 Proteins are essential to cell structure and function.		$(\widehat{\varphi},\widehat{\varphi},\widehat{\varphi},\widehat{\varphi},\widehat{\varphi},\widehat{\varphi},\widehat{\varphi},\widehat{\varphi},$
 1.2.6 Examples of proteins with specific [3D] shapes include enzymes, some hormones, 	 Explain why the three-dimensional structure of a protein [its specificity] is critical to its function, especially in: Enzyme + substrate binding 	ŶŶÇŶŶŶŶ

I understand that	I can	Mastery Check
receptor proteins,	Cell membrane receptors	
and antibodies.	Hormone action	
 1.3.1 Enzymes: are specific for their substrate increase reaction rates by lowering activation energy. 	 Describe the induced-fit model of enzyme-substrate binding. Explain why enzymes have specific functions and how they can be affected by factors including: temperature pH presence of inhibitors The rate of an enzyme-controlled reaction is affected by: concentrations of reactants concentration of the enzyme 	ŵôċôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôôô
1.4 – GENE EXPRESSION AND MUTATION		
1.4.1 The phenotypic expression of genes depends on factors controlling transcription and translation. These include the products of other genes and the environment.		ŶŶÇÇÇÇQQ
1.4.2 Cellular differentiation associated with tissue growth and development is controlled by gene expression.	Recognise that changes in DNA methylation and histone modification can alter gene expression.	ŶŶŶŶŶŶŶ
1.4.3 Epigenetic changes can lead to phenotypic differences between identical siblings, phenotypic differences between clones; and may cause human diseases	☑ Explain how epigenetic modifications in genes that control cell division, such as changes in DNA methylation, can lead to cancer.	<u></u>
1.4.4 Changes in the DNA sequence are called 'mutations'.		$\begin{array}{c} \phi \phi$

I understand that	I can	Mastery Check
1.4.5 Mutations in genes and chromosomes can result from errors in DNA replication or cell division, or from damage by physical or chemical factors in the environment.	Describe the effect of mutations such as point, frameshift, or involving parts of or whole chromosomes on the genetic code and overall protein formation.	ŶŶŶŶŶŔŔ
 1.4.6 Mutation rate can be increased by: ionising radiation mutagenic chemicals viruses. 	 Explain how inheritable mutations can lead to changes in the characteristics of the descendants. Compare the different potential consequences of mutations in germ cells and somatic cells. 	ŶŶŶŶŶ
1.5 – DNA PROFILING		
1.5.1 DNA can be extracted from cells.		
1.5.2 Modern techniques can be used to analyse even small amounts of DNA.		ŶŶŢŶŢ
1.5.3 Segments of DNA can be multiplied using the polymerase chain reaction (PCR)	 Describe PCR, including the roles of heating and cooling primers free nucleotides heat-resistant enzymes 	ŶŶŶŶŶ
1.5.4 The base sequence of DNA can be determined by electrophoresis.	☑ Describe electrophoresis	ŶŶŶŶŶŶ
1.5.5 The results of electrophoresis may be displayed in an electropherogram	☑ Interpret electropherograms that illustrate DNA sequences.	<u> </u>
1.5.6 DNA sequencing enables mapping of species genomes.		$\begin{array}{c} \phi \phi$

I understand that	I can	Mastery Check
1.5.7 The results of electrophoresis can be used to construct DNA profiles. They may be displayed in an electropherogram or in a table of data.		ŸŸŢŢŢŢŢ
1.5.8 DNA profiling identifies the unique genetic makeup of individuals	 Interpret electropherograms and tables of data that illustrate DNA profiles Explain how differences in DNA fragments, identified by DNA profiling, can be used; for example, in forensic science. Discuss the ethical, economic, and cultural issues related to the collection of genetic information. 	ŶŶŶŶŶ
1.6 - GENETIC ENGINEERING & BIOTECHNOLOGY		
 1.6.1 Biotechnology can involve the use of plasmids and viruses as vectors bacterial enzymes and yeasts 	☑ Describe how particular genes can be selected using probes and removed using restriction enzymes.	ŶŶŢŢŢŢŢŢ
1.6.2 Techniques include, bacterial transformations, electroporation, microinjection	 Describe how particular genes can be selected using probes and removed using restriction enzymes. Describe how particular genes can be transferred between species; for example, using bacterial plasmids, viruses, and microinjection. 	ŶŶŶŶŶ
1.6.3	☑ Describe how CRISPR such as CRISPR-Cas9 can be used to edit and/or transfer genes.	$(\mathbf{y}_{\mathbf{y}}^{\mathbf{y}},\mathbf{y}_{\mathbf{y}}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}}^{\mathbf{y}},\mathbf{z}_{\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z},\mathbf{z}},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z}},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z},\mathbf{z}},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z},\mathbf{z}^{\mathbf{z},\mathbf{z},\mathbf{z}^{\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z}^{\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z}^{\mathbf{z},\mathbf{z},\mathbf{z},\mathbf{z},\mathbf$

I understand that	l can	Mastery Check
1.6.4	☑ Discuss the design of new proteins and their uses.	ŶŶŶŶŶ