

O1 – DNA AND PROTEINS 1.2 - Structure and function of proteins (part B)

1.2.4 The folding of a polypeptide to form a protein with a unique three-dimensional shape is determined by its sequence of amino acids.

Describe the factors that determine the primary, secondary, tertiary, and quaternary structure of proteins.

KEY MACROMOLECULES

<u>Polymer</u> (macromolecule)	<u>Monomer</u>
DNA/RNA	
Carbohydrate (complex sugar)	
Lipid (fat)	
Protein (polypeptide)	

Typical amino acid

Figure 1.13: General structure of an amino acid

Primary Structure

Secondary Structure

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Ricin () is a protein that is <u>extracted</u> from the <u>castor</u> <u>bean</u> (*Ricinus communis*). Ricin may cause allergic reactions, and is toxic, though the severity depends on the route of exposure.

В

Α

Describe the factors that determine the primary, secondary, tertiary, and quaternary structure of proteins.

Primary codons determine order; peptide bonds bind them

Secondary

Tertiary

Quaternary

1.2.5 Proteins are essential to cell structure and functioning.

1.2.6 Examples of proteins with specific [3D] shapes include

- •enzymes,
- some hormones,
- receptor proteins,
- and antibodies.

Explain why the three-dimensional structure of a protein [its specificity] is critical to its function.

Two Key Types of Protein Molecules

I. Fibrous

usually structural (hair, connective tissue, etc); usually only show 1° and 2° structure; for example:

- Keratins: soft, weak, makes up hair
- <u>Collagens</u>: tough and strong, in cartilage, tendons, bone, etc

• <u>Elastins</u>: elastic proteins, allow many tissues to resume their original shape after being stretched or contracted

Two Key Types of Protein Molecules

2. Globular

non-structural; often show 3° and 4° structure; for example:

- <u>Enzymes</u>: catalyse various reactions in cells
- <u>Hormones</u>: chemical messages between cells
- <u>Haemoglobin</u>: carries oxygen
- <u>Antibodies</u>: protect body from invading organisms

KEY = control and regulation

Haemoglobin

(quaternary structure)

2 pairs of polypeptide chains

Total = 600 amino acids

Other binding groups (Heme)

How to wreck a protein - Frying and Egg Animation

https://www.sumanasinc.com/webcontent/animations/content/proteinstructure.html

3D SHAPE IS CRITICAL & HIGHLY SPECIFIC to its FUNCTION.

- allows it bind to other proteins (fit together)
- allows it to receive messages from other proteins
- allows it to bind to other molecules (like DNA)
- allows it to bind to only specific molecules

(specificity) to help as a catalyst (speed up reactions)

hexokinase

Enzyme specificity (no fit = no function/reduced function)

<u>Peptide</u> Hormones & Receptor Proteins

(cell communication in multicellular organisms)

Antibodies

(body self defence proteins)

Antibody = protein molecules that bind to antigens, helping body destroy invaders

Antigen = foreign molecules found on surface invading micro organisms

