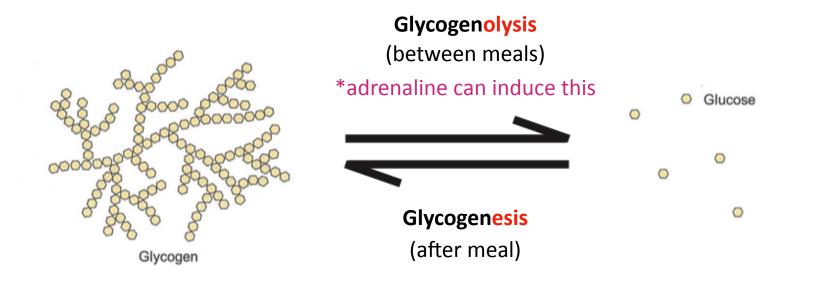


Glucoregulation & Adrenaline

Controlling Glucose Levels



3.3.3 Hormones can alter the **metabolism** of target cells, tissues, or organs.

Compare the action of **insulin** and **glucagon** in blood sugar regulation.

Describe how **diabetes mellitus** can result from a hormonal imbalance.

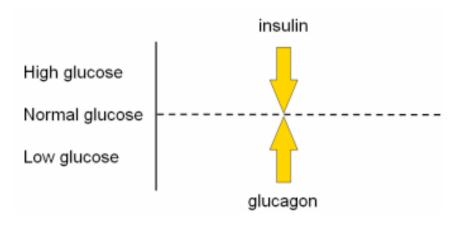
Controlling Glucose Levels I. Glycogen

stored up glucose

glucose in blood

Controlling Glucose Levels 2. Gluconeogenesis

Controlling Glucose Levels 3. Pancreas: insulin & glucagon (to control glucose levels in blood)


Insulin	Glucagon
Stimulates absorption of glucose from blood	Stimulates release of glucose from blood by
by cells in the muscles, liver and fatty tissue.	cells in the muscles, liver and fatty tissue.
Stimulates glycogenesis	Stimulates glycogenolysis
Inhibits gluconeogenesis	Stimulates gluconeogenesis
Inhibits glycogenolysis	Inhibits glycogenesis

antagonistic hormones

Controlling Glucose Levels 3. Pancreas: insulin & glucagon

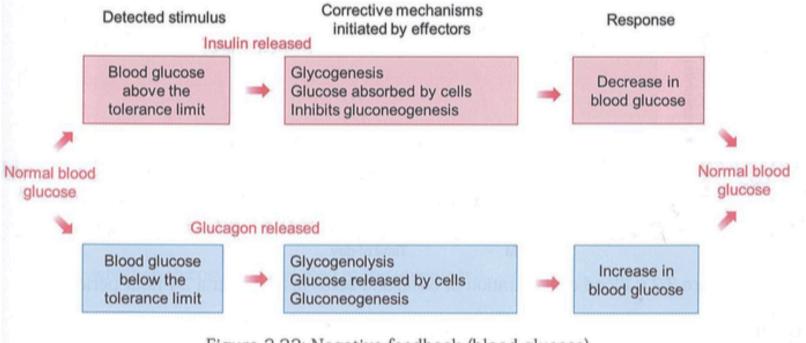
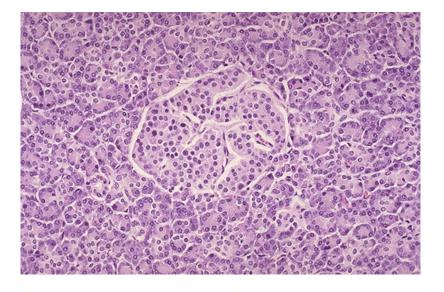
insu lin

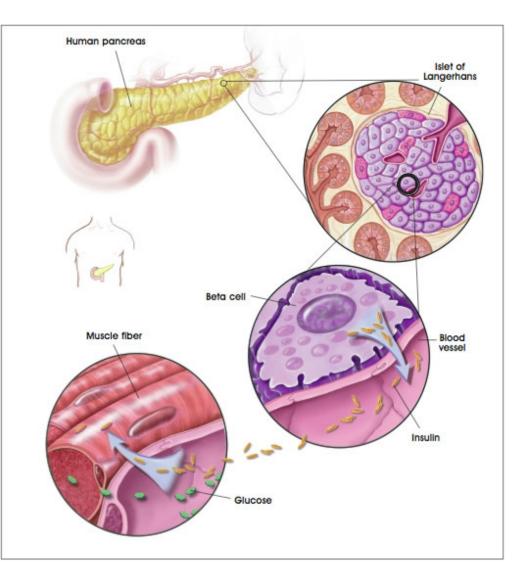
- promotes cells absorbing sugar from blood which lowers blood sugar levels
- stimulates glycogenesis
- inhibits _____
- inhibits _____

GLUCAGON

- promotes cells releasing glucose into the blood which increases blood sugar levels
- stimulates _____
- stimulates _____
- inhibits _____

Controlling Glucose Levels Negative Feedback


Figure 3.22: Negative feedback (blood glucose)

Regulating Glucose Levels

Beta cells secrete INSULIN

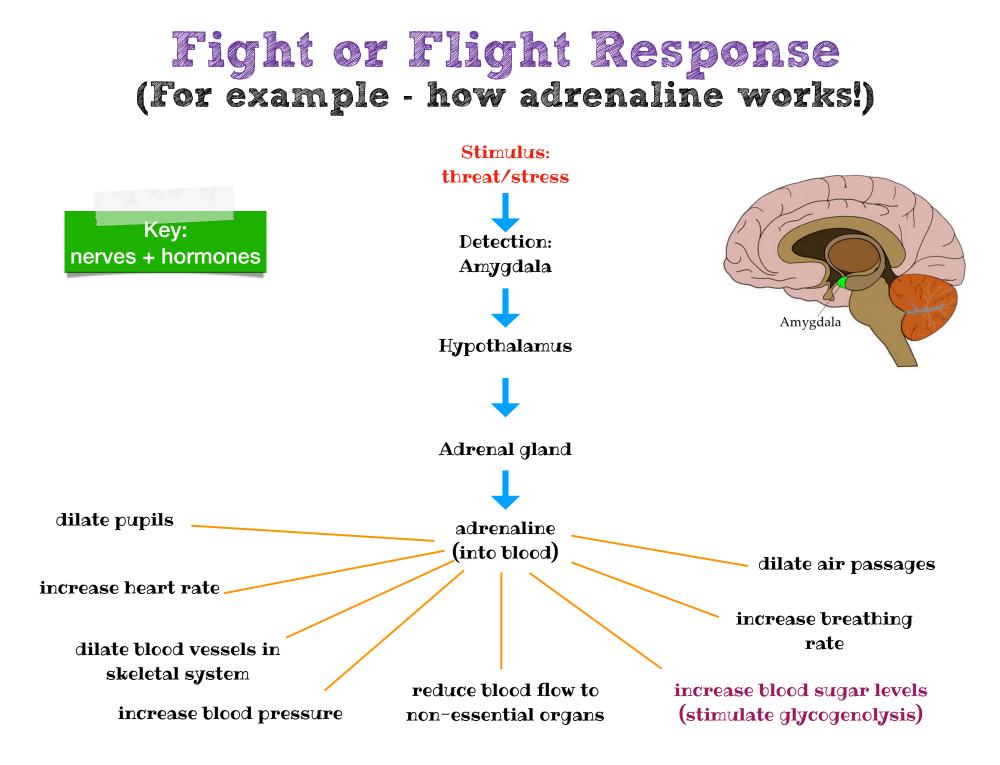
Alpha cells secrete GLUCAGON

Diabetes mellitus

Describe how **diabetes mellitus** can result from a hormonal imbalance.

Diabetes = disorder of the endocrine system

- 1. Not enough insulin produced
- 2. Cells don't respond to insulin


Diabetes mellitus	Summary	
Type 1 (insulin-dependent)	 Pancreatic beta cells do not produce sufficient insulin to regulate blood glucose level. Typically develops in childhood and accounts for 5–10% of cases of diabetes mellitus. Treatment involves multiple injections of insulin daily or a continuous infusion of insulin from a pump. 	
Type 2 (non-insulin dependent)	 Tissue cells become resistant to insulin which interferes with the regulation of blood glucose level. Develops at any stage of life and accounts for 90% of cases 	

Diabetes Treatment

Describe how **diabetes mellitus** can result from a hormonal imbalance.

Type 1 = injection of insulin

Type 2 = change diet, exercise, and use medications

Nervous & Endocrine Achieving Homeostasis

Factor	Nervous system	Endocrine system
Body Temperature	 * thermoreceptors in hypothalamus detect and respond to changes * nerve impulses to skeletal muscles, sweat glands, 	 * pituitary produces TSH * thyroid produces hormones (thyroxine) to up metabolism * produce adrenaline and insulin to up rate of respiration
Osmolarity	arterioles to initiate response * osmoreceptors in hypothalamus that detect and	* pituitary produces ADH to increase water reabsorption
	respond to osmolarity * send nerve impulse to pituitary to modify rate of ADH production	
Blood Glucose	* chemoreceptors in pancreas	* pancreas secretes insulin and
Levels	detect blood sugar levels * nerves stimulate adrenal gland to increase sugar levels in blood	glucagon to regulate blood sugar levels
Blood pH	* chemoreceptors in brain and heart detect changes in pH * stimulate medulla oblongata	* altering thyroxine (thyroid gland) and adrenaline levels (adrenal gland) to impact rate of respiration and body activity
	to change rate of breathing	respiration and body activity.