SIMPLE INTEREST

$$A = P + I$$

A = total amount (\$)

P = principal (\$)

R = interest rate per annum (%)

T = time in years

$$P = I RT$$

$$R = I \times 1000$$

x100 to convert to %

$$T = I$$
 PR

PYTHAGORAS' THEOREM

$$c^2 = a^2 + b^2$$
 Officially

$$c = \sqrt{a^2 + b^2}$$
 Finding the hypotenuse

$$\alpha = \sqrt{c^2 - b^2}$$
 Finding another side

$$a = \sqrt{\frac{c^2}{2}}$$
 Isosceles triangle

$$c = \sqrt{a^2 + b^2}$$
 Testing for right-angles

TRIGONOMETRY

$$\sin\theta = \frac{0}{H}$$

$$\cos \theta = \frac{A}{H}$$

$$tan \theta = \frac{0}{A}$$

Position of unknown	what todo?	Rearrangement (example)
Τορ	×	$x = 7 \times \sin 35$
Denominator	÷	x=17-cos 71
Angle	Inverse	0 = tan 17

EXPANDING BRACKETS

The distributive law

$$a(b+c) = ab+ac$$

Binomial expansion (FOIL rule) (a+b)(c+d) = ac+ad+bc+bd

Difference of two squares rule

$$(a+b)(a-b) = a^2 - b^2$$

Perfect square rules

$$(a+b)^2 = a^2 + 2ab + b^2$$

 $(a-b)^2 = a^2 - 2ab + b^2$

FACTORISATION

Difference of two squares rule

$$a^2 - b^2 = (a+b)(a-b)$$

Perfect square rules

$$a^{2} + 2ab + b^{2} = (a+b)^{2}$$

$$a^{2} - 2ab + b^{2} = (a-b)^{2}$$

The Laws of Indices

Law	Description	Formula
Multiplication of powers	When multiplying numbers with the same base, keep the base and add the indices.	$a^m \times a^n = a^{m+n}$
Division of powers	When dividing numbers with the same base, keep the base and subtract the indices.	$a^m \div a^n = a^{m-n}$
Power of a power	When raising a number in index form to a power, keep the base and multiply the indices.	$(a^m)^n = a^{m \times n}$
Expanding products	When removing brackets around a product that has been raised to a power, raise each number to that power.	$(ab)^m = a^m b^m$
Expanding quotients	When removing brackets around a quotient that has been raised to a power, raise each number to that power.	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$
The zero index	Any number raised to the power of zero is equal to 1. Note that 0^0 is undefined.	$a^0 = 1 \ (a \neq 0)$
Negative indices	A number raised to a negative power is equal to 1 divided by the same number raised to the positive power.	$a^{-m} = \frac{1}{a^m} \ (a \neq 0)$