Calculation of surface area-to-volume ratio

Calculate (1) the surface area, (2) the volume, and (3) the surface to volume ratio for the following four cubes. (Show your work!)

FORMULAS:

Surface Area $(S A)=$ length X height X number of sides [How many sides on a cube? (6)] Volume $(V)=$ length X height X width

1

2

SA for Cube A: \qquad 6

SA for Cube B. \qquad 24 \qquad
V for Cube B: \qquad 8

SA $/$ V Ratio $=\underline{24 / 8=3}$
\qquad

SA for Cube C \qquad 54

V for Cube C: \qquad
SA $/ \mathrm{V}$ Ratio $=\underline{\mathbf{5 4 / 2 7}=2}$

SA for Cube D \qquad 96

V for Cube D: \qquad
SA $/ V$ Ratio $=\underline{96 / 64=1.5}$

Question:

What happens to the surface area to volume ratio as the cube gets larger?

Answer:

SA / V decreases as the cube gets bigger
\qquad

Calculation of surface area-to-volume ratio

Calculate (1) the surface area, (2) the volume, and (3) the surface to volume ratio for the following four cubes (Show your work!)

FORMULAS:

Surface Area $(S A)=$ length X height X number of sides [How many sides on a cube? (6)] Volume $(V)=$ length X height X width

1

2

SA for Cube C: \qquad
V for Cube C: \qquad
SA / V Ratio = \qquad
\longrightarrow

SA for Cube B: \qquad
\qquad
\qquad
SA for Cube D \qquad
V for Cube D: \qquad
SA / V Ratio = \qquad

Question:

What happens to the surface area to volume ratio as the cube gets larger?

