

4.2 Reproductive Isolation Mechanisms

Defining Species

4.2.1 Different criteria are used to define a species <u>depending on the mode of</u> <u>reproduction</u>.

4.2.2 A species that reproduces **sexually** can be defined by the ability of its members to actually or potentially interbreed to **produce fertile offspring**.

4.2.3 Other criteria used to define a species include:

- morphological similarity
- biochemical similarity
- sharing a common gene pools

Criteria	Description		
Morphology	Organisms are classified based on similarities in shape and		
Morphology	anatomy.		
Biochemistry	Organisms are classified based on similarities in the		
	chemical composition of cells and tissues as well as		
	similarities in the metabolic processes that occur in cells.		
Genetic composition	Organisms are classified based on similarities in DNA		
	nucleotide sequences in genomes.		

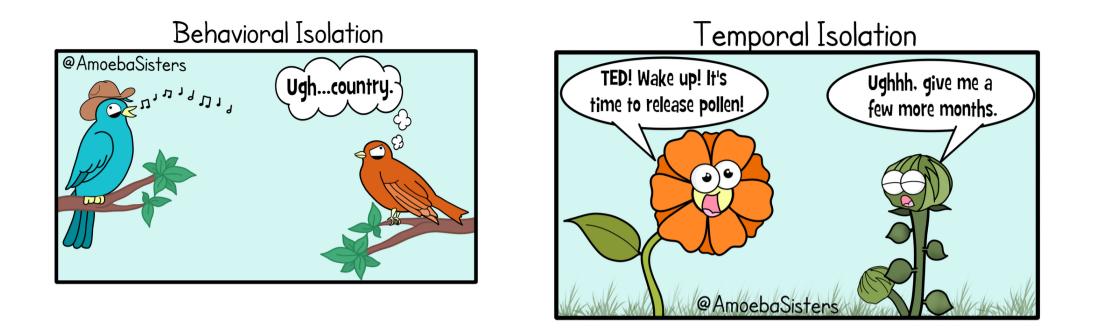
Reproductive Isolation

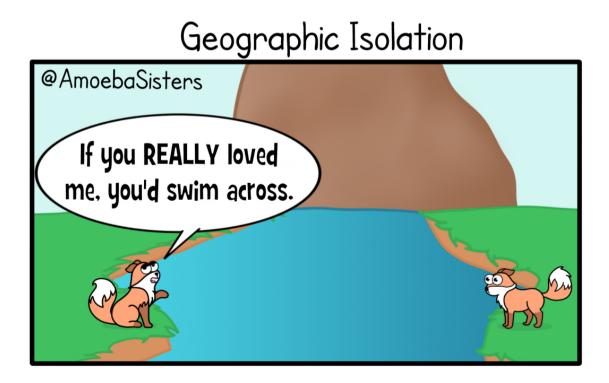
4.2.4 Reproductive isolating mechanisms act to maintain distinct species.

Define:

✓ Describe pre-zygotic (prevention of zygote formation) mechanisms including:

- temporal isolation
- behavioural isolation
- mechanical isolation
- gamete isolation.

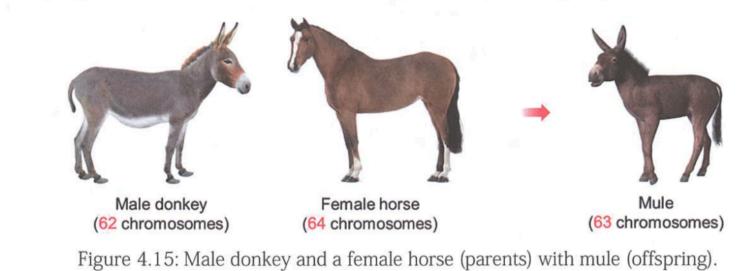

Describe post-zygotic (prevention of fertile hybrids) mechanisms including:


- •hybrid inviability
- •hybrid sterility.

Pre-Zygotic Isolation

Mechanism	Description		
	This occurs when species occupy different habitats (or niches) within		
Ecological isolation	a geographical area. Organisms are prevented from mating as they		
	do not share a habitat or breeding ground.		
	This occurs when species inhabit the same geographical area but are		
Temporal isolation	sexually mature at different times of the year and will not mate for		
	this reason.		
Mechanical isolation	This occurs in animals where differences in the shape of genitalia		
Mechanical Isolation	prevent mating between members of different species.		
D.1. 1. 1. 1	This occurs when animals exhibit species-specific courtship patterns		
Behavioural isolation	which fail to impress members of different species.		
	This occurs when a species produces gametes that are incompatible		
Gametic isolation	with those of a different species. Fertilisation is unsuccessful when		
	gametes cannot fuse and form a zygote.		

Pre-zygotic Iso	Pre-zygotic Isolating Mechanisms		Example	
Temporal	Occurs when two species mate at different times of year	Frogs live in same pond but breed during different seasons (summer vs spring)		
Ecological	Occurs when two species occupy different habitats	Lions and tigers can potentially interbreed, but usually occupy different habitats		
Behavioural	Occurs when two species have different courtship behaviours	Certain groups of birds will only respond to species-specific mating calls		
Mechanical	Occurs when physical differences prevent copulation / pollination	Certain breeds of dog are morphologically incapable of mating due to size		



Post-Zygotic Isolation

Mechanism	Description	
Hybrid unviability	A hybrid offspring is formed but is unhealthy and is unlikely to live long enough to produce offspring.	
Hybrid sterility	A hybrid offspring reaches sexual maturity but is sterile (infertile) because meiosis fails to produce gametes. Differences in chromosome number and structure prevent successful pairing of homologous chromosomes during meiosis.	

Post-zygotic Isolating Mechanisms		Examples	
Hybrid Inviability	Hybrids are produced but fail to develop to reproductive maturity	Certain types of frogs form hybrid tadpoles that die before they can become a frog	$\downarrow \downarrow \downarrow \downarrow \rightarrow \checkmark \checkmark$
Hybrid Infertility	Hybrids fail to produce functional gametes (sterility)	Mules are sterile hybrids resulting from mating between a horse and a donkey	
Hybrid Breakdown	F ₁ hybrids are fertile, but F ₂ generation fails to develop properly	The offspring of hybrid copepods have less potential for survival or reproduction	

The offspring of a female horse and a male donkey is called a mule (Figure 4.15).

