Step-by-step Chemical Calculations

Given the quantity of a substance and a balanced equation
determine the quantity of another substance

1. Calculate moles of known
2. Calculate the number of moles for known

- Use $n=\frac{m}{M}$ if known is a mass
- Use $n=C \times V$ if known is a concentration and volume

4. Use the balanced chemical equation to determine the mole ratio $\frac{n_{\text {unknown }}}{n_{\text {known }}}$

- Use the coefficients (balancing numbers out the front of each species)

5. Calculate the moles of unknown by multiplying moles of known by the mole ratio
6. If unknown is a mass, calculate its molar mass M (using the periodic table)
7. Calculate the quantity for unknown

- Use $m=n \times M$ if mass is required
- Use $C=\frac{n}{V}$ if concentration is required
- Use $V=\frac{n}{C}$ if volume is required

3.

Calculate required quantity of unknown

Step-by-step Chemical Calculations

Given the quantity of each reactant and the balanced equation
determine the excess and limiting reactant

1. For the purpose of following these instructions, label the reactants A and B
2. Calculate the moles present of each

- Use $n=\frac{m}{M}$ if given mass
- Use $n=C V$ if given concentration and volume

3. Use the balanced chemical equation to determine the mole ratio $\frac{n_{A}}{n_{B}}$

- Use the coefficients (balancing numbers out the front of each species)

4. Calculate moles required of A by multiplying the moles present of B by the mole ratio
5. Compare moles present of A with moles required of A

- If present is less than required, A is the limiting reactant (B is in excess)
- If present is more than required, B is the limiting reactant (A is in excess)

SUMMARY
1.

Calculate moles present of each
2.

Calculate moles of one required to exactly react with the other

3.

Compare

moles required with moles present

