SOLUTIONS

1.

(g) $AuS_{(s)}$
(h) $SnSO_{4(aq)}$
(i) $FeCO_{3(s)}$
(j) $K_3PO_{4(aq)}$
(k) NaNO _{3(aq)}
(1) $MgBr_{2(aq)}$

- 2. Barium. (Example reason: Soluble as an oxide, insoluble as a sulphate.)
- 3. (only the ionic equation is written below, the steps to get there are not)
 - (a) $Cl_{2(g)} + Ca_{(s)} \rightarrow CaCl_{2(s)}$ (CaCl₂ is soluble but it's not in water here so it's solid)
 - (b) $PbCO_{3(s)} + 2H^{+}_{(aq)} + 2Cl^{-}_{(aq)} \rightarrow PbCl_{2(s)} + CO_{2(g)} + H_2O_{(l)}$
 - (c) $Mg(HCO_3)_{2(s)} + 2H^+_{(aq)} \rightarrow Mg^{2+}_{(aq)} + CO_{2(g)} + 2H_2O_{(l)}$
 - (d) No reaction (everything is aq on both sides)
 - (e) $H^+_{(aq)} + OH^-_{(aq)} \rightarrow H_2O_{(l)}$
 - (f) $2H^+_{(aq)} \rightarrow H_{2(g)}$
 - (g) $2Li_{(s)} + H_2O_{(l)} \rightarrow Li_2O_{(aq)} + H_{2(g)}$
 - (h) $C_3H_{8(g)} + 5O_{2(g)} \rightarrow 3CO_{2(g)} + 4H_2O_{(1)}$

4. Latent heat of fusion is absorbed/released during melting/freezing, whereas latent heat of vaporisation is absorbed/released during evaporation/condensation.

5.
$$\Delta H = mc\Delta T$$

$$\therefore \Delta T = \frac{\Delta H}{mc_p} = \frac{600}{100 \times 4.18} = 1.4^{\circ}\mathrm{C}$$

6. Soaps and detergents have a long nonpolar chain and a polar end. The nonpolar end is attracted to grease, and the polar end to water. This way the grease can be cleaned off with the water.

The Ca^{2+} and Mg^{2+} ions in hard water form a precipitate with soap, so it can't clean properly. Detergents are not made insoluble by hard water, so they still work.

7. Clay particles have a negative surface charge, which means they are attracted to the strong positive charge of the aluminium ion. This forms clumps (floc) large enough to settle out.