Year 11 Chemistry Test

Rate and Equilibrium

1.

(a) Exothermic, because $\Delta \mathrm{H}$ is negative (it has decreased therefore given energy to the surroundings).
(b) Agree: Exothermic reactions heat up the surroundings, and increasing temperature increases rate. Disagree: It depends on the temperature and/or the activation energy.
(c)

(d) Lowers the activation energy by providing an alternative reaction pathway.
(e) Enzymes are biological catalysts.
(f) There are many possible answers to this question.
2.
(a) Closed system, fixed temperature.
(b) 1 min
(c) Rate
(d) Agree: There is no net reaction Disagree: Reactions are still occurring but they are equal in both directions
(e) Student C. According to LCP the forward direction will be favoured (to decrease the number of molecules of gas). This means NO_{2} should decrease and $\mathrm{N}_{2} \mathrm{O}_{4}$ should increase. The mole ratio shows that NO_{2} should have twice the change that $\mathrm{N}_{2} \mathrm{O}_{4}$ has.
(f)
$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$
(g) $\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}=\frac{0.11}{18^{2}}=3.4 \times 10^{-4}$

This is not equal to K_{C} so the system is not at equilibrium.
3.
(a) coal / syngas
(b) steam
(c) The syngas could be recycled
(d)
(i) Increasing temperature, crushing the coal
(ii) Little-to-no ongoing costs
(e) Low temperature conditions would maximise yield. To maximise yield, conditions should favour the forward reaction. In this case the reaction to oppose change of lower temperature would release energy, which is the forward (exothermic) reaction.

BONUS QUESTIONS

Explain-y bonus question:

Exothermic. The graph shows that the yield is higher at lower temperatures. This means the forward reaction must be releasing energy, since it is favoured to oppose the change of lower temperatures.

Maths-y bonus question:

Let final concentration of NO_{2} be x
Since $\left[\mathrm{NO}_{2}\right]$ starts at 2 , it changes by $x-2$ (final - initial)
Mole ratio $\mathrm{NO}_{2}: \mathrm{N}_{2} \mathrm{O}_{4}$ is $2: 1$ so $\mathrm{N}_{2} \mathrm{O}_{4}$ changes by $\frac{-(x-2)}{2}$
Since $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ starts at 0 , its final is equal to its change, $\frac{-(x-2)}{2}$
$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$
$\therefore 0.5=\frac{\frac{-(x-2)}{2}}{x^{2}}$
$\therefore 0.5 x^{2}=\frac{-(x-2)}{2}$
$\therefore x^{2}=-(x-2)$
$\therefore x^{2}+x-2=0$
$\therefore(x-1)(x+2)=0$
$\therefore x=1 \quad$ (can't have negative concentration so it can't be -2)
$\therefore\left[\mathrm{NO}_{2}\right]=1 \mathrm{~mol} \mathrm{~L}^{-1}$

