Year 11 Chemistry Chemical Calculations Assignment 1 Moles and Mass

1.

- (a) There is no single right answer for this, but the analogy should clearly relate that a mole is a specific number of objects.
- (b) Chemicals always react particle-to-particle, whereas the mass of particles is different for each chemical.

(a)
$$M_{\text{Na}_2\text{CO}_3} = 2 \times 22.99$$

+12.01
+3×16.00
= 105.99 g mol⁻¹
(b) $M_{\text{Mg}(\text{NO}_3)_2} = 24.31$
+2×14.01
+6×16.00
= 148.33 g mol⁻¹
(c) $M_{\text{FeSi}_2\text{O}_3.3\text{H}_2\text{O}} = 55.85$
+2×28.09
+3×16.00
+3×(2×1.008+16.00)
= 214.078 g mol⁻¹

3.
$$H_2$$
 $M = 2.016 \text{ g mol}^{-1}$
 O_2 $M = 32.00 \text{ g mol}^{-1}$
 H_2O $M = 18.016 \text{ g mol}^{-1}$

4.

(a)
$$n = \frac{m}{M} = \frac{2.50}{105.99} = 0.0236 \text{ mol}$$

(b) $M = 14.01 + (4 \times 1.008) + 35.45 = 53.49 \text{ g mol}^{-1}$
 $n = \frac{m}{M} = \frac{0.62}{53.49} = 0.012 \text{ mol}$
(c) $1 \text{ kg} = 1000 \text{ g}$
 $n = \frac{m}{M} = \frac{1000}{249.66} = 4.0 \text{ mol}$

5.

(a) $m = nM = 1.0 \times 63.01 = 63$ g

(b)
$$M_{\rm Hg} = 200.6 \text{ g mol}^{-1}$$

 $m = nM = 0.0200 \times 200.6 = 4.01 \text{ g}$

6.

(a)
$$\frac{n(MnO_4^{-})}{n(Fe^{2+})} = \frac{1}{5}$$

(b) There are many possible answers to this question, some examples are:

$$\frac{n(MnO_4^{-})}{n(Mn^{2+})} = \frac{1}{1} \qquad \qquad \frac{n(H^+)}{n(Fe^{2+})} = \frac{8}{5} \qquad \qquad \frac{n(Fe^{3+})}{n(H_2O)} = \frac{5}{4}$$

7.

(a) There is more oxygen than needed to exactly react with the CH_4 present.

(b) CH₄

- (c) The reaction might be happening in air, which contains a lot of oxygen.
- (d) According to the chemical equation, each mole of CH₄ used up produces one mole of CO₂. Since 3.00 moles of CH₄ are used up, 3.00 moles of CO₂ must be produced.

(e)
$$\frac{n(H_2O)}{n(CH_4)} = \frac{2}{1}$$

(f) $n(H_2O) = \frac{2}{1} \times n(CH_4) = \frac{2}{1} \times 3.00 = 6.00$ moles
(g) $m = nM = 6.00 \times 18.016 = 108$ g

(a)
$$\frac{n(H_2)}{n(O_2)} = \frac{2}{1}$$

 $\therefore n(H_2)$ required $= \frac{2}{1} \times n(O_2)$ present
 $= \frac{2}{1} \times 3.6$
 $= 7.2$ mol

There is more H_2 present (7.4) than required (7.2) so H_2 is in excess. (b) Limiting reactant (O_2) determines quantity produced:

$$\frac{n(\mathrm{H}_{2}\mathrm{O})}{n(\mathrm{O}_{2})} = \frac{2}{1}$$
$$\therefore n(\mathrm{H}_{2}\mathrm{O}) = \frac{2}{1} \times n(\mathrm{O}_{2})$$
$$= \frac{2}{1} \times 3.6$$
$$= 7.2 \text{ mol}$$