Chemical Calculations Assignment 2

Concentration

1.

(a) There is no single right answer for this but the diagram should clearly show that a more concentrated solution has more solute per volume of solvent.
(b) If the solution with more volume also has more solvent, they can have the same concentration. (There is no single right answer for an example).
2.
(a) $57 \div 53.49=1.1 \mathrm{~mol} \mathrm{~L}^{-1}$
(b) $M_{\mathrm{H}_{2} \mathrm{SO}_{4}}=98.076 \mathrm{~g} \mathrm{~mol}^{-1}$
$15 \div 98.076=0.15 \mathrm{~mol} \mathrm{~L}^{-1}$
(c) $0.93 \mathrm{~kg} \mathrm{~L}^{-1}=930 \mathrm{~g} \mathrm{~L}^{-1}$
$930 \div 194.19=4.8 \mathrm{~mol} \mathrm{~L}^{-1}$
3.
(a) $2.0 \times 63.01=130 \mathrm{~g} \mathrm{~L}^{-1}$ (2 s.f.)
(b) $M_{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}}=162.116 \mathrm{~g} \mathrm{~mol}^{-1}$
$5.0 \times 10^{-2} \times 162.116=8.1 \mathrm{~g} \mathrm{~L}^{-1}$
(c) $1.5 \times 10^{-3} \mathrm{~mol} \mathrm{~mL}^{-1}=1.5 \mathrm{~mol} \mathrm{~L}^{-1}$
$1.5 \times 39.997=60 \mathrm{~g} \mathrm{~L}^{-1}(2$ s.f. $)$
4. A solution could be much more dilute than calculated. For example, a solution of $15 \mathrm{~g} \mathrm{~L}^{-1}$ sulfuric acid labelled $15 \mathrm{~mol} \mathrm{~L}^{-1}$ is actually $0.15 \mathrm{~mol} \mathrm{~L}^{-1}$.
5.
(a) $C=\frac{n}{V}=\frac{0.020}{1.0}=0.020 \mathrm{~mol} \mathrm{~L}^{-1}$
(b) $C=\frac{m}{V}=\frac{2.61}{0.500}=5.22 \mathrm{~g} \mathrm{~L}^{-1}$
(c) $C=\frac{m}{V}=\frac{0.12}{100}=0.0012 \mathrm{~g} \mathrm{~mL}^{-1}$ or $1.2 \mathrm{~g} \mathrm{~L}^{-1}$
(d) $C=\frac{n}{V}=\frac{65}{1.5}=43 \mathrm{mg} \mathrm{L}^{-1}$ or $0.043 \mathrm{~g} \mathrm{~L}^{-1}$
6. $C=\frac{n}{V}$ is used when the solute has been measured in moles, and $C=\frac{m}{V}$ is used when the solute has been measured as a mass. These numbers are usually very different.
7. In these solutions, the mole/mass conversion has been done first. Doing the conversion afterwards would also have been fine.
(a) $n=\frac{m}{M}=\frac{3.0}{39.997}=0.075 \mathrm{~mol}$

$$
C=\frac{n}{V}=\frac{0.075}{0.10}=0.75 \mathrm{~mol} \mathrm{~L}^{-1}
$$

(b)
$m=n M=0.00850 \times 36.46=0.3099 \mathrm{~g}$
$500 \mathrm{~mL}=0.500 \mathrm{~L}$

$$
C=\frac{m}{V}=\frac{0.3099}{0.500}=0.620 \mathrm{~g} \mathrm{~L}^{-1}
$$

8.

(a) Multiply both sides by volume, then swap sides.
(b) Multiple both sides by volume, then divide both sides by C.
9. $C=\frac{m}{V}$
$\therefore V=\frac{m}{C}=\frac{5.0}{22}=0.23 \mathrm{~L}$
10.
(a) $C=\frac{n}{V}$

$$
\therefore n=C V=0.100 \times 0.150=0.015 \mathrm{~mol}
$$

(b) $M_{\mathrm{AgNO}_{3}}=169.91 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
0.015 \times 169.91=2.55 \mathrm{~g}
$$

11. In this answer, the mole/mass conversion has been done first. Doing the conversion on the concentration instead would also have been fine.
$n=\frac{m}{M}=\frac{5.0}{39.997}=0.125 \mathrm{~mol}$
$C=\frac{n}{V}$
$\therefore V=\frac{n}{C}=\frac{0.125}{3.0}=0.042 \mathrm{~L}$
