1.

(a) $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{Fe}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{HCl} \rightarrow \mathrm{FeCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}_{2}$
(c) $\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}$
(d) $\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$
2.
(a) ammonia $\left(\mathrm{NH}_{3}\right)$
(b) ammonium ions $\left(\mathrm{NH}_{4}{ }^{+}\right)$
(c) exothermic
3. Since citric acid is a weak acid, it only partially ionises in solution, whereas hydrochloric acid is a strong acid so it fully ionises. Therefore the solution of citric acid will have a much lower hydrogen ion concentration.
4.
(a) oxyacids
(b)

(c)

(d) diprotic
(e) approximately 5.6
5.
(a) $\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$

$$
=10^{-5}=1 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}
$$

(b) Basic
6. [this is not the only correct equation/answer to this question]

Acid rain is formed when strongly acidic oxides such as NO_{2} react with rain water.
$\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}+\mathrm{HNO}_{2}$
These strong acids ionise, increasing the concentration H^{+}and decreasing the pH of rain below 5.6.
Acid rain can wash ions from soil into the water which may harm plants and animals.
7.
(a) $M_{\mathrm{Al}}=26.98 \mathrm{~g} / \mathrm{mol}$

$$
n_{\mathrm{Al}}=\frac{m_{\mathrm{Al}}}{M_{\mathrm{Al}}}=\frac{0.704}{26.98}=0.0261 \mathrm{~mol}
$$

(b) $\frac{n(\mathrm{Al})}{n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}=\frac{2}{3}$
(c) $n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\frac{3}{2} \times n(\mathrm{Al})=\frac{3}{2} \times 0.0261=0.0392 \mathrm{~mol}$
(d) $C_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{n_{\mathrm{H}_{2} \mathrm{SO}_{4}}}{V_{\mathrm{H}_{2} \mathrm{SO}_{4}}}=\frac{0.0392}{0.0140}=2.80 \mathrm{~mol} / \mathrm{L}$
(e) $M_{\mathrm{H}_{2} \mathrm{SO}_{4}}=98.076 \mathrm{~g} / \mathrm{mol}$
$\therefore 2.80 \times 98.076=274 \mathrm{~g} / \mathrm{L}$
$\therefore 274 \div 10=27.4 \mathrm{~g} / 100 \mathrm{~mL}=27.4 \% \mathrm{w} / \mathrm{v}$

BONUS QUESTION
$n_{\mathrm{Mg}}=\frac{m_{\mathrm{Mg}}}{M_{\mathrm{Mg}}}=\frac{0.912}{24.31}=0.0375 \mathrm{~mol}$
$\frac{n_{\mathrm{HCl}}}{n_{\mathrm{Mg}}}$ is $\frac{2}{1}$
$\therefore n_{\mathrm{HCl}}=n_{\mathrm{Mg}} \times \frac{2}{1}=0.0375 \times \frac{2}{1}=0.0750 \mathrm{~mol}$
$V_{\text {HCI }}=\frac{n_{\text {HCl }}}{C_{\text {HCI }}}=\frac{0.0750}{0.176}=0.426 \mathrm{~L}$

