
1. A fullerene is a nanomaterial consisting of carbon atoms arranged in a regular shape such as the ball-like shape below:

1	۱ ـ ۱	State what is	maant h	tha tarm	'nanomaterial'.
١	d)	State what is	meant by	y the term	nanomatenai .

(1))

(b)	Fullere	enes are p	otentiall	y us	eful (lue to their unique	properties,	includin	g excellent (electrical
	condu	ctivity and	extreme	e du	rabil	ty (strength).				
	_			•						

	Suggest one possible	use for fullerenes,	and give a reason	for this suggestion
--	----------------------	---------------------	-------------------	---------------------

_____(2

2. Consider a mixture of salt, sand, and water. The salt completely dissolves in the water, but the sand is insoluble (does not dissolve at all). The melting points and boiling points of the three substances are listed below:

Substance	Melting point (°C)	Boiling point (°C)
Water	0	100
Salt	801	1465
Sand	1713	2950

(a)	State whether this mixture is homogeneous or heterogenous.	

(1)

b)	Describe a method to separate the salt from the sand and water. You may include multiple steps if
	necessary.

	(-)
	(3)
	(3)

		rticles are presente				ty, the	y pro	duce	spe	ecific	colo	ours (wa	veler
			П										
	m with t	ole of a m he spectr			sing a	bsorpt	tion s	pectr	OSC	ору І	by со	omparinį	g its
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 	 								
Element A: Element B: Element C:													

3.

4. Consider the isotope copper-63, which can be converted into chemicals which measure blood flow in the kidneys.

a)	Calculate the	number o	of neutrons	in copper-63.
----	---------------	----------	-------------	---------------

		(1)

	(b)	Write	goo	per-63	in	$^{A}_{\neg}X$	form.
١	(~ <i>i</i>	*****	COP	PC. 00		7 1	

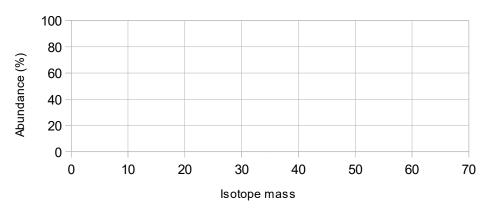
(c)	Another isotope of copper is copper-65.	
	State whether the physical and/or chemical properties of copper-65 are different from copper-63.	
		(1)

		.	_			
$^{(H)}$	Write the electron	configuration	of conner	ucinσ	cuhchall	notation
(u,	WITH THE CICCHOIL	Comingulation	oi coppci,	using	JUDSHICH	Hotation

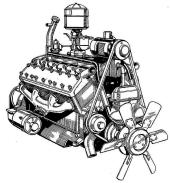
- \
٠,١
/ 1
-,

(e) Write the electron configuration of Cu²⁺, using subshell notation.

IZ.
\=\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\


(f) Calculate the relative atomic mass of copper, given that the relative atomic masses of its naturally occurring isotopes are 62.93 (69.17%) and 64.93 (30.83%).

_____(2)


(g) On the axes below, plot the relative abundance of copper.

Relative Abundance of Copper

(1)

5. The engines of cars are powered by burning petrol with oxygen from air. For the engine to work well, there must be around 13 times as many oxygen molecules compared to fuel molecules.

(a)	One molecule that can be burnt as fuel is octane, C_8H_{18} . Calculate the molar mass of C_8H_{18}	
(b)	Calculate the number of moles of O_2 in 130 g.	(1)
_ _ _		(2)
(c)	Explain whether an engine would work well if $130 g$ of O_2 is reacted with $10 g$ of octane.	
_		
Th/	e periodic table arranges the elements in way that helps to see patterns (trends) in properties.	(3)
	State whether calcium or carbon has a larger atomic radius.	(1)
(b)	State whether boron or fluorine has a higher electronegativity.	(1)
(c)	State which block of the periodic table strontium is found in.	(1)

6.