Topic 2: Combining Atoms

Knowledge	Application

Subtopic 2.1: Types of Materials

Materials can be classified according to their structure and bonding into four types of substances.	Classify materials as molecular, metallic, ionic, and covalent network, given relevant conductivity and melting point data.	
Melting points can be used to classify materials into molecular and non- molecular lattices. Electrical conductivity of non-molecular materials provides evidence for three types of primary bonding: metallic, ionic, and covalent.		

Subtopic 2.2: Bonding Between Atoms

The formation of bonds between atoms results in stable valence-shell configurations.	
Energy is released when bonds are formed. Energy is required to break bonds.	
Metallic, ionic, and covalent bonds are the strong forces of attraction (primary bonds) between particles.	
Metallic Bonding	Explain the melting and boiling points, and electrical conductivities of metallic elements.
Metallic bonding is the force of attraction between metal cations and their delocalised valence electrons.	
The physical properties of metallic elements can be explained using the model for metallic bonding.	
Ionic Bonding	Predict the charge on the monatomic ion formed by an element, using its position in the periodic table.
Valence electrons are transferred from a metallic atom to a non-metallic atom to form ions. Ionic bonding is the force of attraction between the oppositely charged ions.	Write the electron configuration, using subshell notation of the monatomic ion of any of the first 38 elements of the periodic table.
lonic compounds are continuous and are represented by empirical formulae.	Write formulae for ionic compounds given the charges on the ions.
The properties of ionic compounds can be explained using the model for ionic bonding.	Explain the melting and boiling points, and electrical conductivities of ionic compounds.
Covalent Bonding	Use electron-dot diagrams and structural formulae to show covalent bonds between non-metallic atoms.
Non-metallic atoms share electrons to form covalent bonds.	Use electronegativity values, or the position of atoms in the periodic table, to predict and explain the polarity of a covalent bond.
A covalent bond may be polar or non-polar.	
Covalent bonding is found in molecular and non-molecular (continuous) substances.	Indicate the polarity of a covalent bond, using the appropriate convention.
A molecule can be represented by a molecular formula.	Explain the melting point, hardness, and electrical
A continuous covalent substance is represented by an empirical formula.	conductivity of continuous covalent substances.
The physical properties of continuous covalent substances can be explained using the model for covalent bonding.	

Subtopic 2.3: Quantities of Molecules and lons

The percentage composition of elements in compounds can be determined from the molar masses of the atoms.	Undertake calculations of percentage composition, by mass, of elements in compounds.
The number of moles of particles (molecules, ions) in a sample can be determined from the mass of the sample and the molar masses of the particles.	Undertake calculations using the relationship $n = \frac{m}{M}$
	and its rearrangements for molecules, and for ions and their compounds.