Year 11 Physics

Equation Sheet

Semester 2

Physical Constants

$g=9.8 \mathrm{~ms}^{-2} \quad \mathrm{~g}=$ magnitude of acceleration due to gravity
$G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-1} \quad G=$ universal constant of gravitation
$h=6.63 \times 10^{-34} \mathrm{Js} \quad h=$ Planck's constant
$c=3.00 \times 10^{8} \mathrm{~ms}^{-1} \quad c=$ speed of light
$e=1.60 \times 10^{-19} \mathrm{C} \quad e=$ charge of an electron

Common Formulae

$$
\begin{array}{ll}
\vec{F}=m \vec{a} & \vec{F}=\text { force } \\
& m=\text { mass } \\
\vec{F}_{1}=-\vec{F}_{2} & \vec{a}=\text { acceleration } \\
\Delta \vec{v}=\vec{v}_{f}-\vec{v}_{i} & \vec{v}=\text { velocity } \\
\Delta \vec{v}=\text { change in velocity }
\end{array}
$$

Projectile Motion

$$
\begin{array}{lll}
v_{H}=v \cos \theta & v=\sqrt{v_{H}{ }^{2}+v_{V}{ }^{2}} \quad \theta=\tan ^{-1}\left(\frac{v_{V}}{v_{H}}\right) & \\
v_{V}=v \sin \theta & \theta=\text { angle to the horizontal } \\
\vec{v}=\vec{v}_{0}+\vec{a} t & v_{H}=\text { horizontal component of velocity } \\
v_{V}=\text { vertical component of velocity } \\
\vec{s}=\vec{v}_{0} t+\frac{1}{2} \vec{a} t^{2} & \begin{array}{l}
v_{0}=\text { initial velocity } \\
v=\text { velocity at time } t \\
v^{2}=v_{0}{ }^{2}+2 a s
\end{array} & \begin{array}{l}
a=\text { acceleration } \\
s=\text { displacement after time } t
\end{array}
\end{array}
$$

Circular Motion

$$
a=\frac{v^{2}}{r} \quad v=\frac{2 \pi r}{T} \quad \theta=\tan ^{-1}\left(\frac{v^{2}}{r g}\right)
$$

$\theta=$ angle to the horizontal
$v=$ orbital speed
$r=$ radius of circle
$a=$ magnitude of centripetal acceleration $T=$ period of motion

Gravitation and Satellites

$$
F=G \frac{m_{1} m_{2}}{r^{2}} \quad v=\sqrt{\frac{G M}{r}} \quad T=\sqrt{\frac{4 \pi^{2} r^{3}}{G M}} \quad a=\frac{G M}{r^{2}}
$$

$M=$ mass of object being orbited $v=$ orbital speed
$r=$ distance between m_{1} and m_{2} $T=$ period of motion

Energy and Momentum

$K=\frac{1}{2} m v^{2} \quad W=F s \cos \theta \quad \theta=$ angle between directions of force F and displacement s $W=$ work done
$\vec{p}=m \vec{v} \quad \Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i} \quad p=$ momentum
$\Delta p=$ change in momentum
$\vec{F}=\frac{\Delta \vec{p}}{\Delta t}$

The Atom and Quantum

$f=\frac{c}{\lambda} \quad \begin{aligned} & f=\text { frequency } \\ & \lambda=\text { wavelength }\end{aligned}$
$E=h f$
$K_{\max }=h f-W \quad W=$ work function of the metal
$p=\frac{h}{\lambda}$
$E_{n}-E_{m}=h f \quad E_{n}-E_{m}=$ energy difference

The Nucleus and Radioactivity
$E_{b}=\Delta m c^{2}$
$A=Z+N$
$A=$ mass number
$Z=$ atomic number
$N=$ number of neutrons

TABLE OF PREFIXES

Prefix	Symbol	Value
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
centi	c	10^{-2}
milli	m	10^{-3}
micro	H	10^{-6}
nano	n	10^{-9}

