Year 11 Physics **Equation Sheet** Semester 2

Physical Constants

$$g = 9.8 \text{ ms}^{-2}$$

g = magnitude of acceleration due to gravity

$$G = 6.67 \times 10^{-11} \,\mathrm{Nm^2 kg^{-1}}$$

G = universal constant of gravitation

$$h = 6.63 \times 10^{-34} \text{ Js}$$

h = Planck's constant

$$c = 3.00 \times 10^8 \,\mathrm{ms^{-1}}$$

c =speed of light

$$e = 1.60 \times 10^{-19} \,\mathrm{C}$$

e =charge of an electron

Common Formulae

$$\vec{F} = m\vec{a}$$

 \vec{F} = force

$$F = m\vec{a}$$

m = mass

$$\vec{F}_1 = -\vec{F}_2$$

 \vec{a} = acceleration

$$\vec{v}$$
 = velocity

$$\Delta \vec{v} = \vec{v}_f - \vec{v}_i$$

 $\Delta \vec{v}$ = change in velocity

Projectile Motion

$$v_H = v \cos \theta$$

$$v_H = v \cos \theta$$

 $v_V = v \sin \theta$ $v = \sqrt{v_H^2 + v_V^2}$ $\theta = \tan^{-1} \left(\frac{v_V}{v_H}\right)$

$$\theta = \tan^{-1} \left(\frac{v_V}{v_H} \right)$$

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

$$\vec{s} = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$

$$v^2 = {v_0}^2 + 2as$$

 θ = angle to the horizontal

 v_H = horizontal component of velocity

 v_v = vertical component of velocity

 v_0 = initial velocity

v =velocity at time t

a = acceleration

s = displacement after time t

Circular Motion

$$a = \frac{v^2}{r}$$

$$v = \frac{2\pi r}{T}$$

$$a = \frac{v^2}{r}$$
 $v = \frac{2\pi r}{T}$ $\theta = \tan^{-1}\left(\frac{v^2}{rg}\right)$

 θ = angle to the horizontal

v = orbital speed

r = radius of circle

a =magnitude of centripetal acceleration

T = period of motion

Gravitation and Satellites

$$F = G \frac{m_1 m_2}{r^2}$$

$$v = \sqrt{\frac{GM}{r}}$$

$$F = G \frac{m_1 m_2}{r^2} \qquad v = \sqrt{\frac{GM}{r}} \qquad T = \sqrt{\frac{4\pi^2 r^3}{GM}} \qquad a = \frac{GM}{r^2}$$

$$a = \frac{GM}{r^2}$$

M =mass of object being orbited v =orbital speed r =distance between m_1 and m_2 T = period of motion

Energy and Momentum

$$K = \frac{1}{2}mv^2$$

$$W = Fs\cos\theta$$

 $K = \frac{1}{2}mv^2$ $W = Fs\cos\theta$ $\theta = \text{angle between directions of force F and displacement s}$ W = work doneW =work done

$$\vec{p} = m\vec{v}$$

$$\vec{p} = m\vec{v} \qquad \Delta \vec{p} = \vec{p}_f - \vec{p}_i$$

$$p = momentum$$

$$\Delta p$$
 = change in momentum

$$\vec{F} = \frac{\Delta \vec{p}}{\Delta t}$$

The Atom and Quantum

$$f = \frac{c}{\lambda}$$

$$f = \frac{c}{\lambda}$$
 $f = \text{frequency}$
 $\lambda = \text{wavelength}$

$$E = hf$$

$$K_{max} = hf - W$$

 $K_{max} = hf - W$ W =work function of the metal

$$p = \frac{h}{\lambda}$$

$$E_n - E_m = hf$$

$$E_n - E_m = hf$$
 $E_n - E_m = \text{energy difference}$

The Nucleus and Radioactivity

$$E_b = \Delta mc^2$$

$$A = Z + N$$

A = Z + N A =mass number Z = atomic number

N = number of neutrons

TARLE OF PREFIXES

IADLE OF PREFIXES		
Prefix	Symbol	Value
giga	G	109
mega	M	10^{6}
kilo	k	10^{3}
centi	c	10^{-2}
milli	m	10-3
micro	μ	10^{-6}
nano	n	10-9