Physical Constants

$$g = 9.8 \text{ ms}^{-2}$$

g = magnitude of acceleration due to gravity

$$G = 6.67 \times 10^{-11} \,\mathrm{Nm^2 kg^{-1}}$$

G = universal constant of gravitation

$$h = 6.63 \times 10^{-34} \text{ Js}$$

h = Planck's constant

$$c = 3.00 \times 10^8 \,\mathrm{ms^{-1}}$$

c =speed of light

$$e = 1.60 \times 10^{-19} \,\mathrm{C}$$

e =charge of an electron

Common Formulae

John Poliniulae	
$\vec{F} = m\vec{a}$	$\vec{F} = \text{force}$
	m = mass
$\vec{F}_1 = -\vec{F}_2$	\vec{a} = acceleration
$\Delta \vec{v} = \vec{v}_f - \vec{v}_i$	\vec{v} = velocity
$\Delta v = v_f - v_i$	$\Delta \vec{v}$ = change in velocity

TABLE OF PREFIXES

Prefix	Symbol	Value
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
centi	c	10-2
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10-9

Projectile Motion

$$v_H = v \cos \theta$$
$$v_V = v \sin \theta$$

$$v_H = v \cos \theta$$

 $v_V = v \sin \theta$ $v = \sqrt{v_H^2 + v_V^2}$ $\theta = \tan^{-1} \left(\frac{v_V}{v_H}\right)$

$$\vec{v} = \vec{v}_0 + \vec{a}t$$

$$\vec{s} = \vec{v}_0 t + \frac{1}{2} \vec{a} t^2$$

$$v^2 = {v_0}^2 + 2as$$

 θ = angle to the horizontal

 v_H = horizontal component of velocity

 v_v = vertical component of velocity

 v_0 = initial velocity

v =velocity at time t

a = acceleration

s = displacement after time t

Circular Motion

$$a = \frac{v^2}{r}$$

$$v = \frac{2\pi r}{T}$$

$$a = \frac{v^2}{r}$$
 $v = \frac{2\pi r}{T}$ $\theta = \tan^{-1}\left(\frac{v^2}{rg}\right)$

 θ = angle to the horizontal

v = orbital speed

r = radius of circle

a =magnitude of centripetal acceleration

T = period of motion

Gravitation and Satellites

$$F = G \frac{m_1 m_2}{r^2}$$

$$v = \sqrt{\frac{GM}{r}}$$

$$F = G \frac{m_1 m_2}{r^2} \qquad v = \sqrt{\frac{GM}{r}} \qquad T = \sqrt{\frac{4\pi^2 r^3}{GM}} \qquad a = \frac{GM}{r^2}$$

M =mass of object being orbited

v = orbital speed

 $r = \text{distance between } m_1 \text{ and } m_2$

T = period of motion