1.			
	a)	State what an electric field is.	/2
	b)	State what the arrows of electric field lines mean and what the density of the lines represents.	/2
	c)	Copy the following diagrams and draw electric field lines around them:	
		i. \oplus	/1
		ii.	/2
		\oplus \ominus	

$$\begin{array}{c} \text{iii.} + + + + + \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}$$

2.

$$\begin{array}{c} 2.0 \text{cm} \\ \begin{array}{c} 3.1 \text{cm} \\ P \\ q_1 = 4.1 \mu \text{C} \end{array} \end{array} \xrightarrow{\begin{array}{c} 3.1 \text{cm} \\ P \\ q_2 = 1.2 \mu \text{C} \end{array}}$$

a) Calculate the electric field strength E at point P due to q_1 .	/3
b) Calculate the electric field strength E at point P due to q_2 .	/3

c) Hence calculate the electric field strength at point *P* due to both q_1 and q_2 . /3

a) State the electric field on the inside of a positively charged metal tin /1

b) Describe the location of the charges on this negatively charged metal conductor:

TOTAL /21

12

[Bonus question] Consider the charges in question 2.

If q_2 is moved instead to a position 3.1 cm directly above *P*, the charges will be positioned like this:

 $q_1 \bigoplus_{2.0 \text{ cm}} P \bigoplus_{2.0 \text{ cm}} q_2$

Calculate the electric field strength at *P*.