## Lens Terminology



## Ray Tracing

Rays of light from an object can be traced through a convex lens, and the focussed image can be found where the rays meet. Only two rays need to be traced, and they can be any of the three below:

- a ray passing through the optical centre of the lens will continue in a straight line
- a ray parallel to the principal axis will pass through $f$ on the other side
- a ray passing through $f$ will emerge parallel to the principal axis on the other side


## Example:



If the rays converge on the same side of the lens as the object, the image is called virtual and is not visible in real life.
If the rays converge on the opposite side the the object, the image is real and can be projected onto a page.
If the rays never converge, there is no image.
The image may be upright (oriented the same way as the object) or inverted.
The magnification $m$ of the image is:

$$
m=\frac{\text { image size }}{\text { object size }}
$$

If $m>1$ the image is enlarged, if $m<1$ the image is diminished.

