NAME

Motion Equation Questions 1: Time

1. Jörg Ngunderssǿn rolls a large steel ball along a flat wooden floor. When he releases the ball it is travelling at $1.5 \mathrm{~ms}^{-1}$.
(a) Calculate the time it takes the ball to travel 11 m .

Further along the floor is Jörg's fiercest foe, Nirk Tergbrüm. The ball rolls slowly towards him and he jumps over it. His initial vertical speed is $9 \mathrm{~ms}^{-1}$.
(b) Calculate Nirk's time of flight.
2. As part of a very important global science experiment, a five cent coin is dropped from a skyscraper at a height of 215 m .
(a) Calculate the time it takes for the coin to reach the ground, ignoring air resistance. $/ 2$
(b) Explain the effect on the time of flight if there is significant air resistance.
3. Consider a cannon fired horizontally out of another cannon at a speed of $47 \mathrm{~ms}^{-1}$ from a height of 36 m .
(a) State why the initial vertical component of velocity is zero. /1
(b) Calculate the time of flight of the cannon. $/ 2$
4. A stunt car drives off a ramp at a speed of $20.8 \mathrm{~ms}^{-1}$ at an angle of 17.5° above the horizontal, and lands on another ramp at the same height.
(a) Calculate the initial horizontal component of velocity. /1
(b) State why the horizontal acceleration of the car is zero, ignoring resistance. /1
(c) Hence calculate the time it takes the stunt car to reach the other ramp, given that they are 25.3 m apart.
(d) Calculate the initial vertical component of velocity. /1
(e) Hence calculate the time of flight of the stunt car using the vertical component.

