NAME_

Motion Equation Questions 3: Velocity

1.	For the last time, consider the situation in which Jörg rolls a large steel ball along a flat f at 1.5 ms ⁻¹ while Nirk jumps upwards at 9 ms ⁻¹ .	loor
	(a) State the steel ball's speed after 3.8 seconds. Give a reason for your answer.	/2
	(b) Calculate Nirk's velocity as he lands.	/3

- 2. A lemming sprints off the edge of a cliff, travelling 3.0 ms⁻¹ horizontally.
 (a) Calculate the lemming's vertical velocity 2.5 seconds later. /3
 (b) State the lemming's horizontal velocity at this time. /2
 (c) Use vector addition to determine the lemming's total velocity at this time. /3
- 3. Consider the boulder in Assignment 2, launched from a catapult, and landing at the same height it was launched. The horizontal component of initial velocity was 24 ms⁻¹ to the right and the vertical component of initial velocity was 21 ms⁻¹ upwards.
 (a) Calculate the velocity of the boulder just as it lands.
 (b) State the velocity of the boulder at maximum height.

TOTAL /19

