Year 11 Physics Assignment Thermal Physics

1.		
	(a) State one similarity and one difference between heat and temperature.	/2
	(b) Suggest and explain one way temperature can be measured without a thermometer.	/3
2.		
	(a) Consider a metal object and a plastic object at the same temperature. Explain which	one
	feels colder to touch.	/2
	(b) "During the winter, the insulation in our homes helps keep the cold out."	
	Explain whether you agree or disagree with this statement.	/2
	(c) Use an example to explain how convection transfers heat energy.	/2
	(d) Write two questions for which the answer could include "Radiant heat".	/2
3.	Explain one example of how thermal expansion is used or worked around.	/3
4		
	(a) Use an analogy to explain thermal equilibrium. Thermal equilibrium is like	/2
	(b) Calculate the rate at which energy will be transferred from a hot drink at 70° C, given	n
	that the room temperature is 25° C, the surface area exposed to the air is 5.0×10^{-3} m ² , and	
	the heat transfer coefficient from water to air is $13 \text{ Wm}^{-2}\text{K}^{-1}$.	/2

- (c) "A hot drink at 90°C will reach room temperature faster than a hot drink at 70°C."
 Explain whether you agree or disagree with this statement.
- 5. The graph below compares the average daily temperatures for the month of September in two South Australian towns. Price is a coastal town, Hawker is inland.

Explain why the difference between maximum and minimum temperatures is larger for Hawker than for Price. /2

6. The specific heat capacity of water is $4.18 \text{ J/g/}^{\circ}\text{K}$.

7.

- (a) Calculate the energy needed to heat 500 g of water by 50° K. /2
- (b) When 50g of aluminium at 100°C is placed in water and cools to 30°C, it loses 3075 J of heat energy. Calculate the specific heat capacity of aluminium.
 /3
- (c) Consider 10.0g of water at 100°C. If 1.0g of water evaporates, calculate the temperature of the remaining 9.0 grams, given the latent heat of vaporisation for water is 2272 J/g.

/3

(a) A car engine operates at an efficiency of about 25%. Explain what this means.
(b) An 11 W compact fluorescent lamp bulb produces about 0.99 W of light.
Calculate the efficiency of the lamp.
/2

TOTAL /36