Motion Equation Solutions 1: Time

1.

(a) $t=$? $\quad s=11 \mathrm{~m} \quad v_{0}=1.5 \mathrm{~ms}^{-1} \quad a=0 \mathrm{~ms}^{-2}$
$s=v_{0} t$
$\therefore t=\frac{s}{v_{0}}$
$=\frac{11}{1.5}$

$$
=7.3 \mathrm{~s}
$$

The ball will take 7.3 s to travel 11 m
(b) $s=0 \mathrm{~m} \quad v_{0}=9 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad t=$?
$s=v_{0} t+\frac{1}{2} a t^{2}$
$0=t\left(v_{0}+\frac{1}{2} a t\right)$
$\therefore v_{0}+\frac{1}{2} a t=0 \quad$ or $\quad t=0$
$\therefore t=\frac{-v_{0}}{\frac{1}{2} a}=\frac{-9}{\frac{1}{2} \times-9.8}=2 \mathrm{~s}$
Nirk's time of flight is 2 s
2.
(a) $s=-215 \mathrm{~m}$ (down) $\quad a=-9.8 \mathrm{~ms}^{-2} \quad v_{0}=0 \mathrm{~ms}^{-1} \quad t=$?
$s=v_{0} t+\frac{1}{2} a t^{2}$
$\therefore s=\frac{1}{2} a t^{2}$
$\therefore t=\sqrt{\frac{s}{\frac{1}{2} a}}=\sqrt{\frac{-215}{\frac{1}{2} \times-9.8}}=6.6 \mathrm{~s}$
(b) It would be increased because the acceleration would be slower
3.
(a) The cannon is fired horizontally and components don't affect each other
(b) $s=-36 \mathrm{~m}$ (down) $\quad a=-9.8 \mathrm{~ms}^{-2} \quad v_{0}=0 \mathrm{~ms}^{-1} \quad t=$?
$s=v_{0} t+\frac{1}{2} a t^{2}$
$\therefore s=\frac{1}{2} a t^{2}$
$\therefore t=\sqrt{\frac{s}{\frac{1}{2} a}}=\sqrt{\frac{-36}{\frac{1}{2} \times-9.8}}=2.7 \mathrm{~s}$
4.
(a) $v_{0_{H}}=v_{0} \cos \theta=20.8 \cos 17.5^{\circ}=19.8 \mathrm{~ms}^{-1}$
(b) Because the only other force acting is weight, which is a downwards force.
(c) $s=25.3 \mathrm{~m} \quad v_{0}=19.8 \mathrm{~ms}^{-1} \quad a=0 \mathrm{~ms}^{-2} \quad t=$?
$s=v_{0} t+\frac{1}{2} a t^{2}$
$\therefore s=v_{0} t$
$\therefore t=\frac{s}{v_{0}}=\frac{25.3}{19.8}=1.3 \mathrm{~s}$
(d) $v_{0_{v}}=v_{0} \sin \theta=20.8 \sin 17.5^{\circ}=6.25 \mathrm{~ms}^{-1}$
(e) $s=0 \mathrm{~m} \quad v_{0}=6.25 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad t=$?
$s=v_{0} t+\frac{1}{2} a t^{2}$
$0=t\left(v_{0}+\frac{1}{2} a t\right)$
$\therefore v_{0}+\frac{1}{2} a t=0 \quad$ or $\quad t=0$
$\therefore t=\frac{-v_{0}}{\frac{1}{2} a}=\frac{-6.25}{\frac{1}{2} \times-9.8}=1.3 \mathrm{~s}$

