Motion Equation Solutions 1: Time

1.

(a)
$$t = ?$$
 $s = 11 \text{ m}$ $v_0 = 1.5 \text{ ms}^{-1}$ $a = 0 \text{ ms}^{-2}$
 $s = v_0 t$

$$\therefore t = \frac{s}{v_0}$$

$$= \frac{11}{1.5}$$

$$= 7.3 \text{ s}$$

The ball will take 7.3 s to travel 11 m

(b)
$$s = 0 \text{ m}$$
 $v_0 = 9 \text{ ms}^{-1}$ $a = -9.8 \text{ ms}^{-2}$ $t = ?$
 $s = v_0 t + \frac{1}{2} a t^2$
 $0 = t \left(v_0 + \frac{1}{2} a t \right)$
 $\therefore v_0 + \frac{1}{2} a t = 0$ or $t = 0$
 $\therefore t = \frac{-v_0}{\frac{1}{2} a} = \frac{-9}{\frac{1}{2} \times -9.8} = 2 \text{ s}$

Nirk's time of flight is 2 s

2.

(a)
$$s = -215 \text{ m (down)}$$
 $a = -9.8 \text{ ms}^{-2}$ $v_0 = 0 \text{ ms}^{-1}$ $t = ?$

$$s = v_0 t + \frac{1}{2} a t^2$$

$$\therefore s = \frac{1}{2} a t^2$$

$$\therefore t = \sqrt{\frac{s}{\frac{1}{2} a}} = \sqrt{\frac{-215}{\frac{1}{2} \times -9.8}} = 6.6 \text{ s}$$

(b) It would be increased because the acceleration would be slower

3.

(a) The cannon is fired horizontally and components don't affect each other

(b)
$$s = -36 \text{ m (down)}$$
 $a = -9.8 \text{ ms}^{-2}$ $v_0 = 0 \text{ ms}^{-1}$ $t = ?$

$$s = v_0 t + \frac{1}{2} a t^2$$

$$\therefore s = \frac{1}{2} a t^2$$

$$\therefore t = \sqrt{\frac{s}{\frac{1}{2} a}} = \sqrt{\frac{-36}{\frac{1}{2} \times -9.8}} = 2.7 \text{ s}$$

- 4.
- (a) $v_{0_H} = v_0 \cos \theta = 20.8 \cos 17.5^{\circ} = 19.8 \text{ ms}^{-1}$
- (b) Because the only other force acting is weight, which is a downwards force.
- (c) s = 25.3 m $v_0 = 19.8 \text{ ms}^{-1}$ $a = 0 \text{ ms}^{-2}$ t = ? $s = v_0 t + \frac{1}{2} a t^2$ $\therefore s = v_0 t$
 - $\therefore t = \frac{s}{v_0} = \frac{25.3}{19.8} = 1.3 \text{ s}$
- (d) $v_{0_v} = v_0 \sin \theta = 20.8 \sin 17.5^\circ = 6.25 \text{ ms}^{-1}$
- (e) s = 0 m $v_0 = 6.25 \text{ ms}^{-1}$ $a = -9.8 \text{ ms}^{-2}$ t = ?

$$s = v_0 t + \frac{1}{2}at^2$$

$$0 = t\left(v_0 + \frac{1}{2}at\right)$$

:.
$$v_0 + \frac{1}{2}at = 0$$
 or $t = 0$

$$\therefore t = \frac{-v_0}{\frac{1}{2}a} = \frac{-6.25}{\frac{1}{2} \times -9.8} = 1.3 \text{ s}$$