Motion Equation Questions 3: Velocity

1.

(a) $1.5 \mathrm{~ms}^{-1}$. Horizontal acceleration is zero.
(b) $v=? \quad v_{0}=+9 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-1} \quad s=0 \mathrm{~m}$
$v^{2}=v_{0}{ }^{2}+2 a s$
$\therefore v= \pm \sqrt{v_{0}{ }^{2}+2 a s}$

$$
\begin{aligned}
& = \pm \sqrt{9^{2}+2 \times-9.8 \times 0} \\
& = \pm 9 \mathrm{~ms}^{-1}
\end{aligned}
$$

When he lands he will be moving downwards so his final velocity is $9 \mathrm{~ms}^{-1}$ downwards
2.
(a) $v=$? $\quad v_{0}=0.0 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad t=2.5 \mathrm{~s}$

$$
\begin{aligned}
v & =v_{0}+a t \\
& =0.0+-9.8 \times 2.5 \\
& =-25 \mathrm{~ms}^{-1}
\end{aligned}
$$

The lemming's vertical velocity is $25 \mathrm{~ms}^{-1}$ downwards 2.5 seconds later.
(b) The lemming will always be moving at $3.0 \mathrm{~ms}^{-1}$ horizontally out to sea (there is no acceleration in horizontal motion)
(c)
$\stackrel{\rightharpoonup}{3.0 \mathrm{~ms}^{-1}} \quad 25 \mathrm{~ms}^{-1} \quad v=\sqrt{3.0^{2}+25^{2}}=24.7 \mathrm{~ms}^{-1}$

$$
\theta=\tan ^{-1}\left(\frac{25}{3.0}\right)=83^{\circ}
$$

The lemming's velocity at this time is $25 \mathrm{~ms}^{-1}$ at 83° below the horizontal.
3.
(a) Vertical:

$$
\begin{aligned}
& v=? \quad v_{0}=+21 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-1} \quad s=0 \mathrm{~m} \\
& \begin{array}{l}
v^{2}= \\
\begin{array}{l}
v_{0}{ }^{2}+2 a s
\end{array} \\
\begin{aligned}
\therefore & = \pm \sqrt{v_{0}^{2}+2 a s} \\
& = \pm \sqrt{21^{2}+2 \times-9.8 \times 0} \\
& = \pm 21 \mathrm{~ms}^{-1}
\end{aligned}
\end{array} .
\end{aligned}
$$

On landing it will be moving downwards so $v_{V}=-21 \mathrm{~ms}^{-1}$

Horizontal velocity is constant $\quad \therefore \mathrm{v}_{H}=24 \mathrm{~ms}^{-1}$

The lemming's velocity at this time is $32 \mathrm{~ms}^{-1}$ at 41° below the horizontal.
(b) $24 \mathrm{~ms}^{-1}$ to the right.

