Motion Equation Questions 3: Velocity

```
1.
```

(a) 1.5 ms⁻¹. Horizontal acceleration is zero.

(b)
$$v = ?$$
 $v_0 = +9 \text{ ms}^{-1}$ $a = -9.8 \text{ ms}^{-1}$ $s = 0 \text{ m}$
 $v^2 = v_0^2 + 2as$
 $\therefore v = \pm \sqrt{v_0^2 + 2as}$
 $= \pm \sqrt{9^2 + 2 \times -9.8 \times 0}$
 $= \pm 9 \text{ ms}^{-1}$

When he lands he will be moving downwards so his final velocity is 9 ms⁻¹ downwards

2.

(a)
$$v = ?$$
 $v_0 = 0.0 \text{ ms}^{-1}$ $a = -9.8 \text{ ms}^{-2}$ $t = 2.5 \text{ s}$
 $v = v_0 + at$
 $= 0.0 + -9.8 \times 2.5$
 $= -25 \text{ ms}^{-1}$

The lemming's vertical velocity is 25 ms⁻¹ downwards 2.5 seconds later.

(b) The lemming will always be moving at 3.0 ms⁻¹ horizontally out to sea (there is no acceleration in horizontal motion)

(c) 3.0 ms⁻¹

$$\theta$$

 v
 $v = \sqrt{3.0^2 + 25^2} = 24.7 ms^{-1}$
 $\theta = \tan^{-1} \left(\frac{25}{3.0}\right) = 83^{\circ}$

The lemming's velocity at this time is 25 ms⁻¹ at 83° below the horizontal.

3.

(a) Vertical:

$$v = ?$$
 $v_0 = +21 \text{ ms}^{-1}$ $a = -9.8 \text{ ms}^{-1}$ $s = 0 \text{ m}$
 $v^2 = v_0^2 + 2as$
 $\therefore v = \pm \sqrt{v_0^2 + 2as}$
 $= \pm \sqrt{21^2 + 2 \times -9.8 \times 0}$
 $= \pm 21 \text{ ms}^{-1}$

On landing it will be moving downwards so $v_v = -21 \text{ ms}^{-1}$

Horizontal velocity is constant $\therefore v_H = 24 \text{ ms}^{-1}$

24 ms⁻¹

$$v = \sqrt{24^2 + 21^2} = 32 \text{ ms}^{-1}$$

 $\theta = \tan^{-1}\left(\frac{21}{24}\right) = 41^\circ$

The lemming's velocity at this time is 32 ms^{-1} at 41° below the horizontal.

(b) 24 ms^{-1} to the right.