Year 11 Physics Assignment Work, Energy and Momentum

SOLUTIONS

- 1. $K = \frac{1}{2}mv^2 = \frac{1}{2} \times 125 \times 11.9^2 = 8.85 \times 10^3 \text{ J} (3 \text{ s.f.})$
- 2. a) First calculate the weight F of the weights.
 - $F = mg = 0.20 \times 9.8 = 1.96$ N
 - $W = Fs \cos \theta = 1.96 \times 1.0 \times \cos(0) = 2.0 \text{ J} (2 \text{ s.f.})$
 - b) 2.0 J because of conservation of energy (the amount of work done is amount of potential energy gained)
- 3. $W = Fs \cos \theta = 345 \times 5.0 \times \cos(34^\circ) = 1.43 \times 10^3 = 1 \times 10^3 \text{ J} (1 \text{ s.f.})$

The total work done on the crate is $2.86 \times 10^3 = 3 \times 10^3$ J (1 s.f.)

4.

a)

 $\Delta \vec{v} = \vec{v}_{final} - \vec{v}_{int ial} = 2.5 - 2.5 + 2.5 + 2.5$ This makes a right angled triangle: 2.5 Δv 2.5

So the magnitude of change in velocity is $\Delta v = \sqrt{2.5^2 + 2.5^2} = 3.54 \text{ ms}^{-1} \{\text{using pythagoras}\}$

The change in velocity of the ball is 3.5 ms⁻¹ away from the wall.

- b) $\vec{p} = m\vec{v}$
 - :. The change momentum of the ball is $2.1 \times 3.54 = 7.4$ kg ms⁻¹ (2 s.f.) away from the wall.
- c) $\vec{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{7.4}{0.10} = 74$ N away from the wall
- d) 74 N away from the ball.
- 5. According to conservation of momentum, final = initial. $\therefore m_i v_i = m_f v_f$

$$\therefore v_f = \frac{m_i v_i}{m_f}$$

$$\therefore v_f = \frac{8.2 \times 10^3 \times 2.2}{8.2 \times 10^3 + 3 \times 10^3} = \frac{18040}{11200} = 1.61 \text{ ms}^{-1}$$

The final speed of the train is 1.6 ms^{-1} (2 s.f.)