1. $K=\frac{1}{2} m v^{2}=\frac{1}{2} \times 125 \times 11.9^{2}=8.85 \times 10^{3} \mathrm{~J}$ (3 s.f.)
2. a) First calculate the weight F of the weights.

$$
F=m g=0.20 \times 9.8=1.96 \mathrm{~N}
$$

$$
W=F s \cos \theta=1.96 \times 1.0 \times \cos (0)=2.0 \mathrm{~J} \text { (2 s.f.) }
$$

b) 2.0 J because of conservation of energy (the amount of work done is amount of potential energy gained)
3. $W=F s \cos \theta=345 \times 5.0 \times \cos \left(34^{\circ}\right)=1.43 \times 10^{3}=1 \times 10^{3} \mathrm{~J}$ (1 s.f.)

The total work done on the crate is $2.86 \times 10^{3}=3 \times 10^{3} \mathrm{~J}$ (1 s.f.)
4.
a)

This makes a right angled triangle:

So the magnitude of change in velocity is $\quad \Delta v=\sqrt{2.5^{2}+2.5^{2}}=3.54 \mathrm{~ms}^{-1} \quad$ \{using pythagoras\}
The change in velocity of the ball is $3.5 \mathrm{~ms}^{-1}$ away from the wall.
b) $\vec{p}=m \vec{v}$
\therefore The change momentum of the ball is $2.1 \times 3.54=7.4 \mathrm{~kg} \mathrm{~ms}^{-1}$ (2 s.f.) away from the wall.
c) $\vec{F}=\frac{\Delta \vec{p}}{\Delta t}=\frac{7.4}{0.10}=74 \mathrm{~N}$ away from the wall
d) 74 N away from the ball.
5. According to conservation of momentum, final $=$ initial.
$\therefore m_{i} v_{i}=m_{f} v_{f}$
$\therefore v_{f}=\frac{m_{i} v_{i}}{m_{f}}$
$\therefore v_{f}=\frac{8.2 \times 10^{3} \times 2.2}{8.2 \times 10^{3}+3 \times 10^{3}}=\frac{18040}{11200}=1.61 \mathrm{~ms}^{-1}$
The final speed of the train is $1.6 \mathrm{~ms}^{-1}$ (2 s.f.)

