1.

a) $\vec{F}=\frac{\Delta \vec{p}}{\Delta t}$
$\therefore \Delta \vec{p}=\vec{F} \Delta t=150 \times 1.02=153 \mathrm{kgms}^{-1}$
$\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}$
$\therefore \vec{p}_{f}=\Delta \vec{p}+\vec{p}_{i}=153+0=153 \mathrm{kgms}^{-1}$
The final momentum of the astronaut is $153 \mathrm{kgms}^{-1}$ away from the spacecraft (3 s.f.)
b) The final momentum of the spacecraft is $153 \mathrm{kgms}^{-1}$ away from the astronaut (3 s.f.)
c) $p=m v \quad$ \{considering only magnitudes $\}$
$\therefore v=\frac{p}{m}=\frac{153}{90}=1.7 \mathrm{~ms}^{-1}$ (2 s.f.)
d) $p=m v \quad$ \{considering only magnitudes $\}$
$\therefore v=\frac{p}{m}=\frac{153}{1600}=0.0956 \mathrm{~ms}^{-1}$ (3 s.f.)
2. Q4 (Ball)

Initial Kinetic energy: Final Kinetic energy:
$K=1 / 2 m v^{2}=0.5 \times 2.1 \times 2.5^{2}=6.6 \mathrm{~J}$ $K=1 / 2 m v^{2}=0.5 \times 2.1 \times 2.5^{2}=6.6 \mathrm{~J}$

Change in kinetic energy $=0 \mathrm{~J} \quad \therefore$ Elastic collision as kinetic energy is conserved

Q5 (Train)

Initial Kinetic energy:
$K=1 / 2 m v^{2}$
$\therefore K=0.5 \times 8.2 \times 10^{3} \times 2.2^{2}$
$\therefore K=19844 \mathrm{~J}$

Final Kinetic energy:
$K=1 / 2 m v^{2}$
$\therefore K=0.5 \times 11200 \times 1.61^{2}$
$\therefore K=14516 \mathrm{~J}$

Change in kinetic energy $=-5328 \mathrm{~J} \quad \therefore$ Not elastic collision as kinetic energy is lost.
3. Since the initial momentum was zero, the total final momentum should be vectorially zero:

So considering only magnitudes, we have a right angled triangle:

$$
\begin{aligned}
p_{B} \\
p_{A}
\end{aligned} \quad \begin{aligned}
& p_{A}=m_{A} v_{A}=2.5 \times v_{A} \\
& p_{B}=m_{B} v_{B}=1 \times 4=4 \mathrm{kgms}^{-1} \\
& p_{C}=m_{C} v_{C}=0.5 \times 6=3 \mathrm{kgms}^{-1}
\end{aligned} \quad \therefore \begin{array}{lll}
4 \\
& &
\end{array}
$$

Using pythagoras, $\quad 2.5 \times v_{A}=\sqrt{4^{2}+3^{2}}=\sqrt{25}=5$

$$
\therefore v_{A}=\frac{5}{2.5}=2 \mathrm{~ms}^{-1}
$$

The final speed of fragment A is $2 \mathrm{~ms}^{-1}$ (1 s.f.)
4.

$$
\begin{aligned}
\vec{p}_{\text {initial }}=m_{A} \vec{v}_{A_{\text {mital }}}+m_{B} \vec{v}_{B_{\text {Bitaid }}} & =\xrightarrow{\vec{p}_{\text {intial }}} \\
& 51 \times 3.3 \\
& \left.=\sqrt{168.3^{2}+137.5^{2}} \quad \text { \{pythagoras }\right\} \\
& =217 \mathrm{kgms}^{-1}
\end{aligned}
$$

Momentum is conserved so the final momentum of their mass is the same as the initial momentum.
$\vec{p}_{\text {final }}=\left(m_{A}+m_{B}\right) \vec{\nu}_{\text {final }}=\vec{p}_{\text {initial }}$
$\therefore(51+55) v=217$
$\therefore v=\frac{217}{106}=2.1 \mathrm{~ms}^{-1}$
Their combined mass is moving at $2.1 \mathrm{~ms}^{-1}$.

