1.

(a) $s=$? $\quad t=3.8 \mathrm{~s} \quad v_{0}=1.5 \mathrm{~ms}^{-1} \quad a=0 \mathrm{~ms}^{-2}$
$s=v_{0} t$
$=1.5 \times 3.8$

$$
=5.7 \mathrm{~m}
$$

(b) $s=? \quad v_{0}=9 \mathrm{~ms}^{-1} \quad v=0 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2}$
$v^{2}=v_{0}^{2}+2 a s$
$\therefore s=\frac{v^{2}-v_{0}{ }^{2}}{2 a}$
$=\frac{0^{2}-9^{2}}{2(-9.8)}$
$=4 \mathrm{~m}$
2.
(a) $s=$? $\quad t=10.3 \mathrm{~s} \quad v_{0}=0 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2}$

$$
\begin{aligned}
s & =v_{0} t+\frac{1}{2} a t^{2} \\
& =\frac{1}{2} a t^{2} \\
& =\frac{1}{2} \times-9.8 \times 10.3^{2} \\
& =520 \mathrm{~m}
\end{aligned}
$$

(b) It would take the same amount of time. Horizontal and vertical components of velocity don't affect each other.
(c) $s=? \quad t=10.3 \mathrm{~s} \quad v_{0}=21.6 \mathrm{~ms}^{-1} \quad a=0 \mathrm{~ms}^{-2}$

$$
s=v_{0} t+\frac{1}{2} a t^{2}
$$

$$
=v_{0} t
$$

$$
=21.6 \times 10.3
$$

$$
=222 \mathrm{~m}
$$

(d) Higher launch means more time to fall. Horizontal velocity is constant so $s_{H} \propto t$
3.
(a) $v_{0_{H}}=v_{0} \cos \theta=32 \cos 41^{\circ}=24 \mathrm{~ms}^{-1}$ $v_{0_{V}}=v_{0} \sin \theta=32 \sin 41^{\circ}=21 \mathrm{~ms}^{-1}$
(b) The vertical component is used to calculate the time of flight.
(c) Vertical first:
$s=0 \mathrm{~m} \quad v_{0}=21 \mathrm{~ms}^{-1} \quad a=-9.8 \mathrm{~ms}^{-2} \quad t=$?
$s=v_{0} t+\frac{1}{2} a t^{2}$
$0=t\left(v_{0}+\frac{1}{2} a t\right)$
$\therefore v_{0}+\frac{1}{2} a t=0 \quad$ or $\quad t=0$
$\therefore t=\frac{-v_{0}}{\frac{1}{2} a}=\frac{-21}{\frac{1}{2} \times-9.8}=4.3 \mathrm{~s}$
Then horizontal:

$$
\begin{aligned}
s & =? \quad t=4.3 \mathrm{~s} \quad v_{0}=24 \mathrm{~ms}^{-1} \quad a=0 \mathrm{~ms}^{-2} \\
s & =v_{0} t+\frac{1}{2} a t^{2} \\
& =v_{0} t \\
& =24 \times 4.3 \\
& =100 \mathrm{~m}(2 \text { s.f. })
\end{aligned}
$$

