1.
(a)
$$s = ?$$
 $t = 3.8 \text{ s}$ $v_0 = 1.5 \text{ ms}^{-1}$ $a = 0 \text{ ms}^{-2}$
 $s = v_0 t$
 $= 1.5 \times 3.8$
 $= 5.7 \text{ m}$
(b) $s = ?$ $v_0 = 9 \text{ ms}^{-1}$ $v = 0 \text{ ms}^{-1}$ $a = -9.8 \text{ ms}^{-2}$
 $v^2 = v_0^2 + 2as$
 $\therefore s = \frac{v^2 - v_0^2}{2a}$
 $= \frac{0^2 - 9^2}{2(-9.8)}$
 $= 4 \text{ m}$

2.

- (a) s = ? t = 10.3 s $v_0 = 0$ ms⁻¹ a = -9.8 ms⁻² $s = v_0 t + \frac{1}{2} a t^2$ $= \frac{1}{2} a t^2$ $= \frac{1}{2} \times -9.8 \times 10.3^2$ = 520 m
- (b) It would take the same amount of time. Horizontal and vertical components of velocity don't affect each other.
- (c) s = ? t = 10.3 s $v_0 = 21.6$ ms⁻¹ a = 0 ms⁻² $s = v_0 t + \frac{1}{2} a t^2$ $= 21.6 \times 10.3$ = 222 m
- (d) Higher launch means more time to fall. Horizontal velocity is constant so $s_H \propto t$

- 3.
- (a) $v_{0_H} = v_0 \cos \theta = 32 \cos 41^\circ = 24 \text{ ms}^{-1}$ $v_{0_V} = v_0 \sin \theta = 32 \sin 41^\circ = 21 \text{ ms}^{-1}$
- (b) The vertical component is used to calculate the time of flight.
- (c) Vertical first:

$$s = 0 \text{ m} \quad v_0 = 21 \text{ ms}^{-1} \quad a = -9.8 \text{ ms}^{-2} \quad t = ?$$

$$s = v_0 t + \frac{1}{2} a t^2$$

$$0 = t \left(v_0 + \frac{1}{2} a t \right)$$

$$\therefore v_0 + \frac{1}{2} a t = 0 \quad \text{or} \quad t = 0$$

$$\therefore t = \frac{-v_0}{\frac{1}{2}a} = \frac{-21}{\frac{1}{2} \times -9.8} = 4.3 \text{ s}$$

Then horizontal:

$$s = ?$$
 $t = 4.3$ s $v_0 = 24 \text{ ms}^{-1}$ $a = 0 \text{ ms}^{-2}$
 $s = v_0 t + \frac{1}{2} a t^2$
 $= v_0 t$
 $= 24 \times 4.3$
 $= 100 \text{ m} (2 \text{ s.f.})$