Year 11 Physics Equation Sheet, Semester 1

Forces and Newton's Laws

$$\vec{F} = m\vec{a}$$
 $F = \text{force}$

$$\vec{F_1} = -\vec{F_2}$$
 $m = \text{mass}$

$$a = acceleration$$

$$g = 9.8 \text{ms}^{-2}$$
 $g = \text{magnitude of acceleration due to gravity}$

Electricity and Magnetism:

$$P = \Delta VI$$
 $P = power$

$$k = 9.00 \times 10^9 \,\text{Nm}^2\text{C}^{-2}$$
 $\Delta V = \text{potential difference}$

$$I = \text{current}$$

$$F = k \frac{q_1 q_2}{r^2}$$

$$k = \text{electrostatic constant}$$

$$E = k \frac{q}{r^2}$$
 $r = \text{distance between charges}$

$$\Delta V = Ed$$
 $E =$ electric field strength

$$W = q\Delta V$$
 $d = \text{distance between plates}$

$$\Delta V = IR$$
 $W = \text{work done}$

Resistors in series:
$$R = \text{resistance}$$

$$R_T = R_1 + R_2$$

Resistors in parallel:
$$Al = \text{length of wire in magnetic field}$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$$

$$B = \text{magnetic field strength}$$

$$\theta$$
 = angle between current and magnetic field θ = 1Δ θ sin θ

Waves and Light:

$$v = f \lambda$$
 $v = \text{speed}$

$$f = frequency$$

$$\lambda$$
 = wavelength

$$T = \frac{1}{f}$$
 $T = \text{period of oscillation}$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
 $n = \text{refractive index}$

$$\theta$$
 = angle from normal

$$c = 3.00 \times 10^8 \,\text{m}$$
 $c = \text{speed of light}$

Refractive index list:

$$n_{\rm air} = 1.00$$

$$n_{\text{water}} = 1.33$$

$$n_{\rm glass} = 1.55$$

Standard prefixes:

(M) mega
$$\times 10^6$$

(k) kilo
$$\times 10^3$$

(c) centi
$$\times 10^{-2}$$

(m) milli
$$\times 10^{-3}$$

$$(\mu)$$
 micro $\times 10^{-6}$

(n) nano
$$\times 10^{-9}$$