Using Proportionality

Proportionality can be used to solve any problem where two quantities are proportional (all other variables are constant).

For example:
In uniform circular motion according to $v=\frac{2 \pi r}{T}, v$ is proportional to $\frac{1}{T}$ since $2, \pi$ and r are all constant.
So $v \propto \frac{1}{T}$. When two variables are proportional, their ratio is constant, so

$$
\frac{v}{\left(\frac{1}{T}\right)}=k \quad(\text { where } k \text { is a constant })
$$

Another way of thinking about this relationship (simply a rearrangement of the above) is that

$$
v=k \frac{1}{T} \quad \text { (see how } k \text { represents all constants in the original formula) }
$$

In general:
If $a \propto b$, then $\frac{a}{b}=k$ where k is a constant.
Knowing that the ratio is constant allows for problem solving.
Example 1: Cars A and B are driving around a curve. Their speeds are $1.5 v$ and v respectively. Using proportionality, calculate the ratio $T_{\mathrm{A}}: T_{\mathrm{B}}$ of the time it takes each car to drive the curve. $v \propto \frac{1}{T} \quad \therefore \frac{v}{\left(\frac{1}{T}\right)}$ is constant.
$\therefore \frac{v_{\mathrm{A}}}{\left(\frac{1}{T_{\mathrm{A}}}\right)}=\frac{v_{\mathrm{B}}}{\left(\frac{1}{T_{\mathrm{B}}}\right)} \quad \therefore \frac{1.5 v}{\left(\frac{1}{T_{\mathrm{A}}}\right)}=\frac{v}{\left(\frac{1}{T_{\mathrm{B}}}\right)} \quad \therefore 1.5 T_{\mathrm{A}}=T_{\mathrm{B}}$
$\therefore \frac{T_{\mathrm{A}}}{T_{\mathrm{B}}}=\frac{1}{1.5}$
$\therefore T_{\mathrm{A}}: T_{\mathrm{B}}=1: 1.5$

Example 2: A satellite can be placed between the Sun and the Earth such that the net gravitational force on the satellite is zero. Given that $M_{\text {sun }}$ is equal to $332900 \times M_{\text {Earth }}$, use proportionality to calculate the ratio $\frac{r_{\text {Sun }}}{r_{\text {Earth }}}$ of the distances from the satellite.

Let the mass of the satellite be m
$\therefore F=G \frac{m M}{r^{2}} \quad \therefore r=\sqrt{G \frac{m M}{F}}$
The net force on the satellite is zero, so F is equal in both directions, so we can treat it as constant. m and G are also constant, $\therefore r \propto \sqrt{M}$
$\therefore \frac{r}{\sqrt{M}}$ is constant (proportional means their ratio is constant)
$\therefore \frac{r_{\text {Earth }}}{\sqrt{M_{\text {Earth }}}}=\frac{r_{\text {sun }}}{\sqrt{M_{\text {Sun }}}}$
$\therefore \frac{r_{\text {sun }}}{r_{\text {Earth }}}=\frac{\sqrt{M_{\text {Sun }}}}{\sqrt{M_{\text {Earth }}}}=\frac{\sqrt{332900 M_{\text {Earth }}}}{\sqrt{M_{\text {Earth }}}}=\sqrt{332900}=577$

