Proportionality Worksheet 1

Direct Proportionality

Learning Intention: To be able to write a *direct* proportionality relationship and slope of the graph, from a formula.

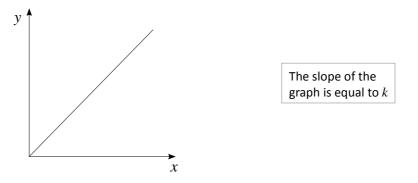
In Physics investigations, the relationship between an *independent* variable and a *dependent* variable is determined by <u>changing the independent</u> and <u>measuring the dependent</u>.

A formula or equation often has more than two variables, and we only want to measure the effect of one variable on another – so we must keep <u>everything else constant</u>.

If the two variables that are changing are *directly proportional*, then changing one causes a consistent change in the other. This is true if the equation can be written in the form y = kx where k is constant. The phrase "y is directly proportional to x" can be written $y \propto x$

(The equals changes to a proportionality symbol " \propto " and the constants are removed from the equation).

If two variables are directly proportional, the graph will be a straight line through the origin:



Important note: Not every straight line graph is a direct proportionality. If the graph doesn't pass through the origin (0,0) then the relationship is called linear dependent and the equation is of the form y = mx + c

Direct proportionality examples:

- 1. If a = 3b, then $a \propto b$ because 3 is constant. The slope of the graph will be 3.
- 2. If $s = \frac{1}{3}t$, then $s \propto t$ because $\frac{1}{3}$ is constant. The slope of the graph will be $\frac{1}{3}$.
- 3. If g = Rh and R is held constant, then $g \propto h$. The slope of the graph will be R.
- 4. If $w = \frac{2nQ}{5f}$ and both *n* and *f* are held constant, then $w \propto Q$ because 2 and 5 are also constant.

The slope of the graph will be $\frac{2n}{5f}$.

Practice:

Write the proportionality relationship and the slope of the graph for each of the following:

1. n = 5m

$$2. \quad A = \frac{2}{5}B$$

- 3. T = 3Lb, if *b* is held constant.
- 4. $d = \frac{6abc}{e}$, if b, c and e are all held constant.

Proportionality Worksheet 2

Inverse Proportionality

Learning Intention: To be able to write an *inverse* proportionality relationship and slope of the *transformed* graph, from a formula.

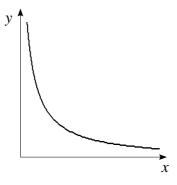
If the two variables that are changing are *inversely proportional*, then changing one causes the opposite change in the other, for example decreasing one increases the other.

This is true if the equation can be written in the form $y = k \frac{1}{x}$ or $y = \frac{k}{x}$ where k is constant.

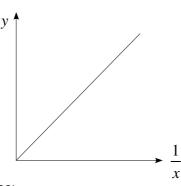
The phrase "y is inversely proportional to x" can be written $y \propto \frac{1}{x}$

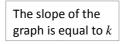
(The equals changes to a proportionality symbol " \propto " and the constants are removed from the equation).

If two variables are inversely proportional, the graph of the two variables will have this shape:



We can't find the equation of this graph, so we need to *transform* the data into a straight line form first. y is *directly* proportional to $\frac{1}{x}$ so we graph these:





Inverse proportionality examples:

1. If $a = \frac{3}{b}$, then $a \propto \frac{1}{b}$ because 3 is constant. The slope of the transformed graph will be 3. 2. If $w = \frac{2nQ}{5f}$ and both *n* and *Q* are held constant, then $w \propto \frac{1}{f}$ because 2 and 5 are also constant. The slope of the the transformed graph will be $\frac{2nQ}{5}$

Practice:

Write the proportionality and the slope of the transformed graph for each of the following:

1.
$$n = \frac{5}{m}$$

2.
$$d = \frac{6abc}{e}$$
, if a, b , and c are all held constant.

Proportionality Worksheet 3

Other Proportionalities

Learning Intention: To be able to *predict* a proportionality relationship and find an equation, from *data*.

The rules we have seen so far can be applied to many relationships. Here are some more examples of equations and their proportionality. In each case k is held constant.

Equation	Proportionality	
$y = kx^2$	$y \propto x^2$ "y is proportional to the square of x"	
$y = \frac{k}{x^2}$	$y \propto \frac{1}{x^2}$ "y is proportional to the inverse square of x"	
$y = kx^3$	$y \propto x^3$ "y is proportional to the cube of x"	
$y = k\sqrt{x}$	$y \propto \sqrt{x}$ "y is proportional to the square root of x"	
$y = \frac{k}{\sqrt{x}}$	$y \propto \frac{1}{\sqrt{x}}$ "y is proportional to the inverse square root of x"	

For each of the following tables of data:

Plot a graph of *dependent* variable against *independent* variable to determine the likely relationship.
 If the relationship is not directly proportional:

- in the relationship is not directly proportional:
 - (a) Fill out a column with transformed values if necessary.
 - (b) Graph the transformed values.
- 3. Find the slope of the line of best fit (and hence the constant of proportionality).
- 4. Find the equation for the original data.

Cross out the middle column if you don't need it. Also, don't worry about units for this exercise.

Table 2

Table 1			
а		b	
1.0		3.1	
2.0		6.3	
3.0		9.4	
4.0		12.6	
5.0		15.7	

Likely relationship:

 m
 n

 1.0
 0.50

 2.0
 0.26

 3.0
 0.17

 4.0
 0.14

 5.0
 0.12

Likely relationship:

 j

 i
 j

 1.0
 2.4

 2.0
 8.2

 3.0
 18.7

 4.0
 32.8

 5.0
 50.3

Likely relationship:

Slope:

Slope:

Slope:

Equation:

Equation:

Equation:

Proportionality Problem Solving

Learning Intention: To be able to use proportionality to *solve problems* involving ratios.

If everything else except the independent and dependent variables are kept constant, then the ratio between the variables is constant (the fraction stays the same).

For example, if y = kx, where k is constant, then $k = \frac{y}{x}$ for all pairs of values for x and y, because $y \propto x$.

So $\frac{y_1}{x_1} = k$, $\frac{y_2}{x_2} = k$, etc., which means that $\frac{y_1}{x_1} = \frac{y_2}{x_2}$. This rearrangement can be useful for solving problems.

Even if the proportionality is not direct, the same rearrangement can be applied.

For example, if $y = kx^2$, where k is constant, then $k = \frac{y}{x^2}$ for all pairs of values for x and y, because $y \propto x^2$. So $\frac{y_1}{x_1^2} = k$, $\frac{y_2}{x_2^2} = k$, etc., which means that $\frac{y_1}{x_1^2} = \frac{y_2}{x_2^2}$.

Proportionality problem solving examples:

1. Consider the formula F = Eq, with *E* held constant.

If F = 4 for some value of q, calculate F if q is doubled.

$$F_{1} = 4 \quad \text{for} \quad q_{1}$$

$$F_{2} = ? \quad \text{for} \quad q_{2} = 2q_{1}$$

$$F \propto q$$

$$\therefore \frac{F_{1}}{q_{1}} = \frac{F_{2}}{q_{2}}$$

$$\therefore F_{2} = \frac{q_{2}F_{1}}{q_{1}} = \frac{2q_{1} \times 4}{q_{1}} = 8 \quad \{q_{1} \text{ cancels }\}$$

2. Consider the formula $a = \frac{v^2}{r}$, with *r* held constant.

If a = 24 for some value of v, calculate a if v is halved.

$$a_{1} = 24 \quad \text{for} \quad v_{1}$$

$$a_{2} = ? \quad \text{for} \quad v_{2} = \frac{1}{2}v_{1}$$

$$a \propto v^{2}$$

$$\therefore \frac{a_{1}}{v_{1}^{2}} = \frac{a_{2}}{v_{2}^{2}}$$

$$\therefore a_{2} = \frac{a_{1}v_{2}^{2}}{v_{1}^{2}} = \frac{24 \times (\frac{1}{2}v_{1})^{2}}{v_{1}^{2}} = \frac{24 \times \frac{1}{4}v_{1}^{2}}{v_{1}^{2}} = 6 \quad \left\{ v_{1}^{2} \text{ cancels} \right\}$$

Practice:

- 1. Consider the formula W = Fd, with d held constant. If W = 120 for some value of F, calculate W if F is halved.
- 2. Consider the formula $K = \frac{1}{2}mv^2$, with *m* held constant. If K = 4 for some value of *v*, calculate *K* if *v* is doubled.
- 3. Consider the formula F = ma, with F held constant. If a = 8 for some value of m, calculate a if m is doubled.