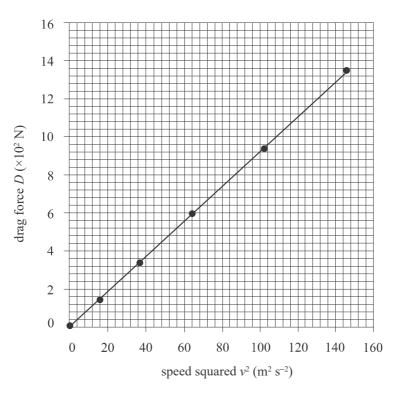
Experimental Skills: Drag Force


(a) An experiment to investigate the drag force acting on an object at different speeds is carried out in a wind tunnel. The results are shown in the table below:

Speed v (m s ⁻¹)	Drag force D (N)	Speed squared v^2 (m ² s ⁻²)
4.04	169	
6.12	340	
7.99	512	
10.1	820	
11.9	1080	

- (i) Complete the table above by calculating each of the values of speed squared v^2 to the appropriate number of significant figures. (3 marks)
- (ii) On the page opposite, plot (*in pencil*) a graph of drag force D against speed squared v^2 and draw a line of best fit. (4 marks)
- (iii) State and explain whether your graph is consistent with the hypothesis that the drag force is directly proportional to the speed squared $(D \propto v^2)$.

_____ (3 marks)

(b) The experiment is repeated, using a different-shaped object. The graph obtained from the results of this second experiment is shown below:

(i) Using the graph above, determine the drag force that would be produced if $v^2 = 155 \text{ m}^2 \text{ s}^{-2}$. Clearly indicate on your graph how you arrived at your answer.

_ (2 marks)

(ii) Calculate the gradient of the line of best fit for this graph, clearly labelling on the graph the points you have used. State the units of the gradient.

_____ (3 marks)

(iii) The relationship between the drag force and the speed of the object is given by

$$D = \frac{1}{2}\rho \, v^2 A \, C$$

where ρ is the density of the surrounding fluid, A is the cross-sectional area of the object, and C is the drag coefficient of the object (it has no units).

Using this relationship and the gradient you calculated in part (b)(ii), find the value of the drag coefficient C for this experiment if $\rho = 1.23$ kg m⁻³ and A = 0.25 m².

_____ (3 marks)

_____ (2 marks)

(c) State and explain the type of error in your graph in part (a), given the relationship described in part (b)(iii).

(d) Identify *two* factors that should be held constant during an experiment to investigate the drag force acting on an object at different speeds.

_____ (2 marks)