Test:	Heat

1.		
	(a) Explain why a cup of water at 70°C has less thermal energy than a	bucket of water at 40°C.
		(2 marks)
	(b) State why a bucket of vegetable oil at 40°C does not have the same the bucket of water.	e amount of thermal energy as
		(1 mark)
	(c) Suggest a reason why measuring temperature in kelvin can be more	re useful than degrees Celsius.
		(1 mark)
2.	Consider two wooden blocks, one at 0°C and one at 50°C. Both are left and then their temperatures are measured in the morning. The room (a) Define 'heat'.	_
		(1 mark)
	(b) Hence explain what each of the temperatures will be in the morning	ng.
		(2 marks)
	(c) Explain one thing that would be different if the 0°C block was meta-	al instead of wood.
		(2 marks)

3.	We put our cold hands near a fire to warm them up. One of the forms of energy we feel from is radiant heat.	m the fire
	(a) Explain how radiant heat works.	
		(2 marks)
	(b) Explain one way, other than radiant heat, that our hands can be warmed by a fire.	
		(2 marks)
1	A kettle boils water by transferring heat into it.	
٦.	(a) Define 'latent heat'.	
		_ (1 mark)
	(b) If a certain amount of water requires 22.7 kJ of energy to boil, use proportionality to de the energy required to boil half as much water. Assume the water is at its boiling point	
		_ (2 marks)
	(c) If a kettle transfers 15 kJ of energy into 50g of water with an initial temperature of 50°C the mass of water that would be boiled. The specific heat capacity of water is 4.18×10³ and the latent heat of vaporisation of water is 2.27×10 ⁶ J/kg.	
		
		(3 marks)

										(2 mark
An experimen temperature o			nces. T	he ene	rgy transi	ferred is	kept cons		_	ect and the
			Inverse o	of Tempera	ture Change	against Mas	s Heated			
	·~	0.14								
	inverse of temperature change (" $\mathbb{C}^{'}$)	0.1								
	er.	0.08			•	 	1	-		
	прегаtı	0.06								
	se ofter	0.02		•		+		_		
	<u> </u>	0.0000	0.0050	0.0100	0.0150	.0200 0.0	250 0.0300	0.0350		
						.0200 0.0	250 0.0500	0.0000		
(a) Write a hy	pothesis	for this	experii	ment.	Mass heated (230 0.0300			
(a) Write a hy	pothesis	for this	experii	ment.			250 0.0500			(2 mark
(a) Write a hy (b) Draw a lin					Mass heated (250 0.0500			(2 mark (1 mar
	e of best	fit on th	ne grap	h above	Mass heated (kg)				,
(b) Draw a lin	e of best	fit on th	ne grap	h above	Mass heated (kg)				,
(b) Draw a lin	e of best	fit on th	ne grap	h above	Mass heated (e the uni	ts for the	slope.		(1 mar
(b) Draw a lin	e of best e the slop	fit on the	ne grap	h above	Mass heated (the uni	ts for the	slope.		(1 mar
(b) Draw a lin	e of best e the slop	fit on the	ne grap	h above	Mass heated (the uni	ts for the	slope.		(1 mar
(b) Draw a lin	e of best e the slop	fit on the	ne grap	h above	Mass heated (the uni	ts for the	slope.		,

(1 mark)

different object with lower specific heat capacity.