NAME

Year 11 Physics Test Energy and Momentum

(a) Show that the work done on a sled dragged 154 m along flat ground by a constar	nt force
(5.6×10^2 N is approximately 8.6×10^4 J.	
		(2)
(b) Calculate the power required if the dragging takes 182 seconds.	
		(2)
(c) Hence calculate the efficiency if the sled is being dragged by a 1.0 kW engine.	
(-	, ,	
		(2)
C	alculate the kinetic energy of a 4.6×10^3 kg elephant running at 11 ms ⁻¹ .	
		(2)
_		(

		
		(3)
(b) Hence state the work required to lift a 1 kg textbook a height of 2 m. Give one reason for your answer.	
		(2)
(c) State what happens to the potential energy when the textbook is dropped.	
		(1)
37	62 kg skateboarder pushes off from a 3.7 kg trolley for 0.52 seconds, applying a convergence of N. Both the skateboarder and trolley were stationary to begin with. Calculate the magnitude of the final momentum of the skateboarder.	onstant forc
		(2)
		(3)

5. A ball with a mass of 0.12 kg bounces off a wall without a change in speed, as shown below:

Calculate the change in momentum of the ball.

(4)

6. The graph below shows variations in the force applied to an object:

Determine the change in momentum after 5.0 seconds.

			(3)

				_
				_
			(3)	
(b) Calculate whether	the collision above is an	elastic or inelastic co	llision.	
				_
				_
			(2)	_
			(2)	
			(2)	
	ducted in which a ball is og its speed at the moment		t heights. The ball pass	ses thr
			t heights. The ball pass	ses thr
	g its speed at the moment dropping	just before it hits the	t heights. The ball pass	ses thr
a light gate, measurin	g its speed at the moment dropping ball light gate	just before it hits the	t heights. The ball pass ground.	ses thr
a light gate, measurin	g its speed at the moment dropping ball	just before it hits the	t heights. The ball pass ground.	ses thr
a light gate, measurin	g its speed at the moment dropping ball light gate	just before it hits the	t heights. The ball pass ground.	ses thr

BONUS QUESTION

A block of 'C-4' explosive (initially stationary) explodes into three pieces, as shown below:

Determine the angle between the directions of pieces A and B.