Year 11 Physics Solutions: Energy and Momentum Test

1.

(a) $W=F s=5.6 \times 10^{2} \times 154=8.6 \times 10^{4} \mathrm{~J}$
(b) $P=\frac{W}{t}=\frac{8.6 \times 10^{4}}{182}=4.7 \times 10^{2} \mathrm{~W}$
(c) efficiency $=\frac{\text { power out }}{\text { power in }} \times 100$

$$
\begin{aligned}
& =\frac{4.7 \times 10^{2}}{1.0 \times 10^{3}} \times 100 \\
& =47 \%
\end{aligned}
$$

2. $K=\frac{1}{2} m v^{2}=\frac{1}{2} \times 4.6 \times 10^{3} \times 11^{2}=2.8 \times 10^{5} \mathrm{~J}$
3.

(a) $E_{p}=m g h=1 \times 9.8 \times 2=20 \mathrm{~J}$ (1 s.f.)
(b) 20 J since energy is conserved, it changed form from work to gravitational potential.
(c) It converts to kinetic energy.
4.
a) $\vec{F}=\frac{\Delta \vec{p}}{\Delta t}$
$\therefore \Delta \vec{p}=\vec{F} \Delta t=37 \times 0.52=1.924 \times 10^{1} \mathrm{kgms}^{-1}$
$\Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}$
$\therefore \vec{p}_{f}=\Delta \vec{p}+\vec{p}_{i}=1.924 \times 10^{1}+0=1.924 \times 10^{1} \mathrm{kgms}^{-1}$
The final magnitude of momentum of the skateboarder is $19 \mathrm{kgms}^{-1}$ (2 s.f.)
b) Momentum must be conserved so the trolley has equal change in the opposite direction.

Therefore the final magnitude of momentum of the trolley is $19 \mathrm{kgms}^{-1}$ (2 s.f.)
5.

$$
\begin{aligned}
& p=m v=0.12 \times 4.3=0.52 \mathrm{~kg} \mathrm{~ms}^{-1} \\
& \Delta \vec{p}=\vec{p}_{f}-\vec{p}_{i}=\frac{\square}{0.52}-\frac{4}{0.52}+\frac{4}{0.52}=\frac{4}{1.0}
\end{aligned}
$$

The change in momentum of the ball is $1.0 \mathrm{~kg} \mathrm{~ms}^{-1}$ away from the wall.
6.

$$
\Delta p=\Delta t \times F
$$

$$
=2 \times 20+3 \times 40=160 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

7.

(a) $p=m v$

$$
\begin{aligned}
& =0.013 \times 91 \\
& =1.2 \mathrm{kgms}^{-1}
\end{aligned}
$$

Momentum is conserved \therefore total final momentum is $1.2 \mathrm{kgms}^{-1}$

$$
v=\frac{p}{m}=\frac{1.2}{1.313}=0.90 \mathrm{~ms}^{-1}
$$

(b) $K_{i}=\frac{1}{2} m_{i} v_{i}^{2}$

$$
K_{f}=\frac{1}{2} m_{f} v_{f}{ }^{2}
$$

$$
\begin{array}{ll}
=\frac{1}{2} \times 0.013 \times 91^{2} & =\frac{1}{2} \times 1.313 \times 0.9^{2} \\
=54 \mathrm{~J} & =0.53 \mathrm{~J}
\end{array}
$$

The collision is inelastic as there is less kinetic energy after the collision.
8. (no single right answer)

BONUS:

Momentum is conserved so $\vec{p}_{A}+\vec{p}_{B}+\vec{p}_{C}=0$

$$
\begin{aligned}
& p_{A}=m_{A} v_{A}=0.25 \times 36=9.0 \mathrm{~ms}^{-1} \\
& p_{B}=m_{B} v_{B}=0.20 \times 45=9.0 \mathrm{~ms}^{-1} \\
& p_{C}=m_{C} v_{C}=0.30 \times 30=9.0 \mathrm{~ms}^{-1}
\end{aligned}
$$

The triangle is equilateral (all sides same length) so the angle in the triangle is 60°. Therefore pieces A and B are 120° from each other.

