Exponential Notation and SI Prefixes 1. Values in Physics are often very small. The mass of a proton, for example, is 1.67×10^{-27} kg. Write this in normal notation and hence suggest why exponential notation is common in Physics. /2 2. Explain which of the following is the best way to enter 9.11×10⁻³¹ into a calculator: (a) 9.11*10^-31 (b) 9.11E-31 (c) 9.11*10E-31 /2 3. Expand the following using SI prefixes: a) 12 mm b) 52 kN c) 5 µs /3 4. Write the following in scientific notation with correct significant figures: a) 0.0000031 b) 52231 c) 2010 (3 s.f.) /6 5. Write the following in normal notation with correct significant figures: a) 1.0×10^{-2} b) 2×10^2 c) 3.542×10^5 /6 6. Write the answer to these calculations, using correct s.f. and units. To avoid confusion, no SI prefixes are used below (so m is for metres, not milli) a) 72 N divided by 1.13×10⁻³ kg b) 5.22×10^{-7} m divided by 1.60×10^{-9} s c) 2×10^{12} N multiplied by 2.01 m d) 2.40×10² m multiplied by 0.03 m e) 2.034×10³ m/s plus 1.15×10³ m/s f) 4.0462×10⁻²⁷ kg minus 1.5158×10⁻³⁰ kg /6