Exponential Notation and SI Prefixes

1. Values in Physics are often very small. The mass of a proton, for example, is 1.67×10^{-27} kg. Write this in normal notation and hence suggest why exponential notation is common in Physics.

/2

2. Explain which of the following is the best way to enter 9.11×10⁻³¹ into a calculator:

(a) 9.11*10^-31

(b) 9.11E-31

(c) 9.11*10E-31

/2

3. Expand the following using SI prefixes:

a) 12 mm

b) 52 kN

c) 5 µs

/3

4. Write the following in scientific notation with correct significant figures:

a) 0.0000031

b) 52231

c) 2010 (3 s.f.)

/6

5. Write the following in normal notation with correct significant figures:

a) 1.0×10^{-2}

b) 2×10^2

c) 3.542×10^5

/6

6. Write the answer to these calculations, using correct s.f. and units.

To avoid confusion, no SI prefixes are used below (so m is for metres, not milli)

a) 72 N divided by 1.13×10⁻³ kg

b) 5.22×10^{-7} m divided by 1.60×10^{-9} s

c) 2×10^{12} N multiplied by 2.01 m

d) 2.40×10² m multiplied by 0.03 m

e) 2.034×10³ m/s plus 1.15×10³ m/s

f) 4.0462×10⁻²⁷ kg minus 1.5158×10⁻³⁰ kg

/6