Year 12 Chemistry Quick Quiz: Using and Controlling Reactions

1. Draw a flowchart for the production of zinc from its ore.
2. Consider the reaction $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}$ in a 0.5 L reaction vessel.

The reaction starts with 2 moles of $\mathrm{N}_{2}, 4$ moles of H_{2}, and zero moles of NH_{3}. At equilibrium, reached 1 minute later, there are 2 moles of NH_{3} present.
(a) Determine the number of moles of each reactant present at equilibrium.
(b) At 2 minutes, the reaction vessel is compressed to 0.25 L , and equilibrium is reestablished by the third minute. Draw a graph showing the concentration of H_{2} over the three minutes (estimate the final concentration of H_{2} using Le Chatelier's Principle).

3. State what it means for the reaction mixture to reach equilibrium.
4. Calculate the maximum volume of water that could be heated $40^{\circ} \mathrm{C}$ by burning 4.0 grams of CH_{4}, given that its molar enthalpy of combustion is $891 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
The specific heat capacity of water is $4.18 \mathrm{~J} \mathrm{~g}^{-1}{ }^{\circ} \mathrm{K}^{-1}$.

