1. For a chemical system at equilibrium:
(a) state the necessary conditions $\quad 12$
(b) describe how the system has dynamic nature
2. Write an expressions for the equilibrium constant K_{c} (balance first) for this reaction:

$$
\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{NO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

3. Two experiments were conducted on the following equilibrium reaction at a constant temperature of $450^{\circ} \mathrm{C}$ in a 1 litre sealed vessel:
$4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}$
(a) In Experiment 1, the initial concentration of HCl is $3.0 \mathrm{~mol} \mathrm{~L}^{-1}$. When equilbrium is achieved, the concentration of HCl is $1.0 \mathrm{~mol} \mathrm{~L}^{-1}$ and the concentration of O_{2} is $0.5 \mathrm{~mol} \mathrm{~L}^{-1}$.
(i) Determine the initial concentration of O_{2}.
(ii) Determine the final concentrations of the products, if both had an initial concentration of $0.0 \mathrm{~mol} \mathrm{~L}^{-1}$.
(iii) Hence determine the K_{c} value. $/ 2$
(b) In Experiment 2, different initial concentrations are used. The final concentrations of $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ and Cl_{2} are all $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$.
Using the K_{c} value calculated in $3(\mathrm{a})$ (iii), determine the final concentration of O_{2}.
(c) This reaction is then carried out in exactly the same conditions but using a 500 mL sealed vessel.
(i) State the effect of this change on the K_{c} value $/ 1$
(ii) State the effect of this change on the equilibrium position /1
4. Consider the equilibrium between dark brown NO_{2} and pale yellow $\mathrm{N}_{2} \mathrm{O}_{4}$.
$2 \mathrm{NO}_{2(g)} \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$
(a) State two ways you could determine whether the above mixture was at equilibrium
(b) A particular mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ in a sealed container is dark brown when it establishes equilibrium at $80^{\circ} \mathrm{C}$ and light yellow when it establishes equilibrium at $10^{\circ} \mathrm{C}$. State and explain the sign for $\Delta \mathrm{H}$ for the equation.
(c) At $40^{\circ} \mathrm{C}, 2$ litres of the gas mixture at equilibrium was found to contain 0.08 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and 0.038 mol of NO_{2}. Calculate K_{c} at $40^{\circ} \mathrm{C}$.
(d) State and explain the effect decreasing the volume of this equilibrium mixture at $40^{\circ} \mathrm{C}$ would have on the composition of the mixture.
(e) Sketch an example concentration vs time graph to illustrate the effect of decreasing the volume.

Consider that the mixture begins at equilibrium, the pressure is increased at 10 mins , and equilibrium is re-achieved at 20 mins. Begin with $\mathrm{N}_{2} \mathrm{O}_{4}$ concentration at double the concentration of NO_{2}.
5. Ammonia can be produced according to the equation below:
$\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftharpoons 2 \mathrm{NH}_{3(g)} \quad \Delta \mathrm{H}=-\mathrm{ve}$
In terms of Le Chatelier's Principle, state and explain the temperature/pressure conditions which would maximise yield of ammonia $\left(\mathrm{NH}_{3}\right)$.

